"
],
"text/plain": [
" R_fighter B_fighter R_KD B_KD R_SIG_STR. B_SIG_STR. \\\n",
"0 Henry Cejudo Marlon Moraes 0 0 90 of 171 57 of 119 \n",
"1 Valentina Shevchenko Jessica Eye 1 0 8 of 11 2 of 12 \n",
"2 Tony Ferguson Donald Cerrone 0 0 104 of 200 68 of 185 \n",
"3 Jimmie Rivera Petr Yan 0 2 73 of 192 56 of 189 \n",
"4 Tai Tuivasa Blagoy Ivanov 0 1 64 of 144 73 of 123 \n",
"... ... ... ... ... ... ... \n",
"5139 Gerard Gordeau Kevin Rosier 1 0 11 of 17 0 of 3 \n",
"5140 Ken Shamrock Patrick Smith 0 0 1 of 1 4 of 8 \n",
"5141 Royce Gracie Art Jimmerson 0 0 0 of 3 0 of 0 \n",
"5142 Kevin Rosier Zane Frazier 2 0 15 of 27 12 of 28 \n",
"5143 Gerard Gordeau Teila Tuli 0 0 3 of 5 0 of 1 \n",
"\n",
" R_SIG_STR_pct B_SIG_STR_pct R_TOTAL_STR. B_TOTAL_STR. R_TD B_TD \\\n",
"0 52% 47% 99 of 182 59 of 121 1 of 4 0 of 2 \n",
"1 72% 16% 37 of 40 42 of 52 2 of 2 0 of 0 \n",
"2 52% 36% 104 of 200 68 of 185 0 of 0 1 of 1 \n",
"3 38% 29% 76 of 195 58 of 192 0 of 3 1 of 3 \n",
"4 44% 59% 66 of 146 81 of 131 0 of 0 2 of 2 \n",
"... ... ... ... ... ... ... \n",
"5139 64% 0% 11 of 17 0 of 3 0 of 0 0 of 0 \n",
"5140 100% 50% 4 of 4 16 of 20 1 of 2 0 of 0 \n",
"5141 0% 0% 4 of 7 0 of 0 1 of 1 0 of 0 \n",
"5142 55% 42% 38 of 53 13 of 29 0 of 0 0 of 0 \n",
"5143 60% 0% 3 of 5 0 of 1 0 of 0 0 of 1 \n",
"\n",
" R_TD_pct B_TD_pct R_SUB_ATT B_SUB_ATT R_PASS B_PASS R_REV B_REV \\\n",
"0 25% 0% 1 0 1 0 0 0 \n",
"1 100% 0% 1 0 3 0 0 0 \n",
"2 0% 100% 0 0 0 0 0 0 \n",
"3 0% 33% 0 0 0 1 0 0 \n",
"4 0% 100% 0 0 0 0 0 0 \n",
"... ... ... ... ... ... ... ... ... \n",
"5139 0% 0% 0 0 0 0 0 0 \n",
"5140 50% 0% 2 0 0 0 0 0 \n",
"5141 100% 0% 0 0 2 0 0 0 \n",
"5142 0% 0% 0 0 0 0 0 0 \n",
"5143 0% 0% 0 0 0 0 0 0 \n",
"\n",
" R_HEAD B_HEAD R_BODY B_BODY R_LEG B_LEG \\\n",
"0 73 of 150 35 of 89 13 of 16 7 of 8 4 of 5 15 of 22 \n",
"1 4 of 5 0 of 7 4 of 6 0 of 2 0 of 0 2 of 3 \n",
"2 65 of 144 43 of 152 25 of 37 15 of 23 14 of 19 10 of 10 \n",
"3 42 of 145 40 of 166 15 of 24 13 of 19 16 of 23 3 of 4 \n",
"4 39 of 114 65 of 114 6 of 7 7 of 8 19 of 23 1 of 1 \n",
"... ... ... ... ... ... ... \n",
"5139 7 of 13 0 of 1 1 of 1 0 of 1 3 of 3 0 of 1 \n",
"5140 1 of 1 1 of 4 0 of 0 1 of 1 0 of 0 2 of 3 \n",
"5141 0 of 1 0 of 0 0 of 0 0 of 0 0 of 2 0 of 0 \n",
"5142 12 of 23 7 of 19 3 of 4 3 of 6 0 of 0 2 of 3 \n",
"5143 3 of 5 0 of 1 0 of 0 0 of 0 0 of 0 0 of 0 \n",
"\n",
" R_DISTANCE B_DISTANCE R_CLINCH B_CLINCH R_GROUND B_GROUND \\\n",
"0 45 of 118 54 of 116 19 of 23 2 of 2 26 of 30 1 of 1 \n",
"1 5 of 8 2 of 12 2 of 2 0 of 0 1 of 1 0 of 0 \n",
"2 103 of 198 68 of 184 1 of 2 0 of 1 0 of 0 0 of 0 \n",
"3 60 of 173 42 of 167 9 of 15 10 of 12 4 of 4 4 of 10 \n",
"4 50 of 126 62 of 111 14 of 18 5 of 6 0 of 0 6 of 6 \n",
"... ... ... ... ... ... ... \n",
"5139 5 of 8 0 of 3 0 of 0 0 of 0 6 of 9 0 of 0 \n",
"5140 0 of 0 1 of 1 0 of 0 1 of 1 1 of 1 2 of 6 \n",
"5141 0 of 3 0 of 0 0 of 0 0 of 0 0 of 0 0 of 0 \n",
"5142 4 of 10 0 of 7 4 of 9 10 of 19 7 of 8 2 of 2 \n",
"5143 1 of 3 0 of 1 0 of 0 0 of 0 2 of 2 0 of 0 \n",
"\n",
" win_by last_round last_round_time Format \\\n",
"0 KO/TKO 3 4:51 5 Rnd (5-5-5-5-5) \n",
"1 KO/TKO 2 0:26 5 Rnd (5-5-5-5-5) \n",
"2 TKO - Doctor's Stoppage 2 5:00 3 Rnd (5-5-5) \n",
"3 Decision - Unanimous 3 5:00 3 Rnd (5-5-5) \n",
"4 Decision - Unanimous 3 5:00 3 Rnd (5-5-5) \n",
"... ... ... ... ... \n",
"5139 KO/TKO 1 0:59 No Time Limit \n",
"5140 Submission 1 1:49 No Time Limit \n",
"5141 Submission 1 2:18 No Time Limit \n",
"5142 KO/TKO 1 4:20 No Time Limit \n",
"5143 KO/TKO 1 0:26 No Time Limit \n",
"\n",
" Referee date location \\\n",
"0 Marc Goddard June 08, 2019 Chicago, Illinois, USA \n",
"1 Robert Madrigal June 08, 2019 Chicago, Illinois, USA \n",
"2 Dan Miragliotta June 08, 2019 Chicago, Illinois, USA \n",
"3 Kevin MacDonald June 08, 2019 Chicago, Illinois, USA \n",
"4 Dan Miragliotta June 08, 2019 Chicago, Illinois, USA \n",
"... ... ... ... \n",
"5139 Joao Alberto Barreto November 12, 1993 Denver, Colorado, USA \n",
"5140 Joao Alberto Barreto November 12, 1993 Denver, Colorado, USA \n",
"5141 Joao Alberto Barreto November 12, 1993 Denver, Colorado, USA \n",
"5142 Joao Alberto Barreto November 12, 1993 Denver, Colorado, USA \n",
"5143 Joao Alberto Barreto November 12, 1993 Denver, Colorado, USA \n",
"\n",
" Fight_type Winner \n",
"0 UFC Bantamweight Title Bout Henry Cejudo \n",
"1 UFC Women's Flyweight Title Bout Valentina Shevchenko \n",
"2 Lightweight Bout Tony Ferguson \n",
"3 Bantamweight Bout Petr Yan \n",
"4 Heavyweight Bout Blagoy Ivanov \n",
"... ... ... \n",
"5139 Open Weight Bout Gerard Gordeau \n",
"5140 Open Weight Bout Ken Shamrock \n",
"5141 Open Weight Bout Royce Gracie \n",
"5142 Open Weight Bout Kevin Rosier \n",
"5143 Open Weight Bout Gerard Gordeau \n",
"\n",
"[5144 rows x 41 columns]"
]
},
"metadata": {
"tags": []
},
"execution_count": 142
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "0NJte1T5kS2W",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 194
},
"outputId": "f3a52dc3-e069-4ac5-d6da-41b128f08840"
},
"source": [
"# retrieved from https://www.kaggle.com/rajeevw/ufcdata\n",
"# on 11/15/2019\n",
"fighter_df = pd.read_csv(\"https://raw.githubusercontent.com/ekoly/DS-Unit-1-Build/master/csv/raw_fighter_details.csv\")\n",
"fighter_df.head()"
],
"execution_count": 143,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"
"
],
"text/plain": [
" LOCATION Country SEX Sex AGE Age \\\n",
"0 AUS Australia MA Males D199G501 Population (hist&proj) 15-64 \n",
"1 AUS Australia MA Males D199G501 Population (hist&proj) 15-64 \n",
"2 AUS Australia MA Males D199G501 Population (hist&proj) 15-64 \n",
"3 AUS Australia MA Males D199G501 Population (hist&proj) 15-64 \n",
"4 AUS Australia MA Males D199G501 Population (hist&proj) 15-64 \n",
"\n",
" VAR Variant TIME Time Unit Code Unit PowerCode Code PowerCode \\\n",
"0 VAR1 Baseline 1950 1950 PER Persons 3 Thousands \n",
"1 VAR1 Baseline 1951 1951 PER Persons 3 Thousands \n",
"2 VAR1 Baseline 1952 1952 PER Persons 3 Thousands \n",
"3 VAR1 Baseline 1953 1953 PER Persons 3 Thousands \n",
"4 VAR1 Baseline 1954 1954 PER Persons 3 Thousands \n",
"\n",
" Reference Period Code Reference Period Value Flag Codes Flags \n",
"0 NaN NaN 2709.7 NaN NaN \n",
"1 NaN NaN 2775.9 NaN NaN \n",
"2 NaN NaN 2837.0 NaN NaN \n",
"3 NaN NaN 2869.4 NaN NaN \n",
"4 NaN NaN 2897.3 NaN NaN "
]
},
"metadata": {
"tags": []
},
"execution_count": 161
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "PUpHCgoFMtQf",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 746
},
"outputId": "c252a1ac-e3ef-4185-8b2b-f45900f92df7"
},
"source": [
"pop_df[\"Age\"].value_counts()"
],
"execution_count": 162,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Population (hist&proj) All ages 14664\n",
"Population (hist&proj) 15-19 7362\n",
"Population (hist&proj) < 15 7362\n",
"Population (hist&proj) < 20 7362\n",
"Population (hist&proj) 75-79 7362\n",
"Population (hist&proj) 30-34 7362\n",
"Population (hist&proj) 05-09 7362\n",
"Population (hist&proj) 15-64 7362\n",
"Population (hist&proj) 50-54 7362\n",
"Population (hist&proj) 20-24 7362\n",
"Population (hist&proj) 55-59 7362\n",
"Population (hist&proj) 00-04 7362\n",
"Population (hist&proj) 65-69 7362\n",
"Population (hist&proj) 70-74 7362\n",
"Population (hist&proj) 40-44 7362\n",
"Population (hist&proj) 45-49 7362\n",
"Population (hist&proj) 60-64 7362\n",
"Population (hist&proj) 25-29 7362\n",
"Population (hist&proj) 35-39 7362\n",
"Population (hist&proj) 10-14 7362\n",
"Population (hist&proj) 20-64 7362\n",
"Population (hist&proj) 65+ 7302\n",
"Population (hist&proj) 80+ 7302\n",
"Population (hist&proj) 80-84 7254\n",
"Population (hist&proj) 85+ 7239\n",
"Youth (-15) Dependency Ratio (15-64) 2454\n",
"Youth (-20) Dependency Ratio (20-64) 2454\n",
"Old (+65) Dependency Ratio (All ages) 2434\n",
"Share (80+) in all ages population 2434\n",
"Old (+65) Dependency Ratio (20-64) 2434\n",
"Old (+65) Dependency Ratio (15-64) 2434\n",
"Working Age (20-64) per Pension Age (+65) 2434\n",
"Age(-15 & +65) Dependency Ratio (15-64) 2434\n",
"Youth (-20) Dependency Ratio (All ages) 2434\n",
"Age(-15 & +65) Dependency Ratio (All ages) 2434\n",
"Youth (-15) Dependency Ratio (All ages) 2434\n",
"Working Age (15-64) per Pension Age (+65) 2434\n",
"Age(-20 & +65) Dependency Ratio (20-64) 2434\n",
"Age(-20 & +65) Dependency Ratio (All ages) 2434\n",
"Population (hist&proj) 75+ 153\n",
"Name: Age, dtype: int64"
]
},
"metadata": {
"tags": []
},
"execution_count": 162
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "_IOd6RT3PCSr",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 194
},
"outputId": "e5999435-3d22-47b6-d7b2-fc07da9d1d71"
},
"source": [
"pop_df = pop_df[pop_df[\"Age\"] == \"Population (hist&proj) All ages\"]\n",
"pop_df.head()"
],
"execution_count": 163,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
LOCATION
\n",
"
Country
\n",
"
SEX
\n",
"
Sex
\n",
"
AGE
\n",
"
Age
\n",
"
VAR
\n",
"
Variant
\n",
"
TIME
\n",
"
Time
\n",
"
Unit Code
\n",
"
Unit
\n",
"
PowerCode Code
\n",
"
PowerCode
\n",
"
Reference Period Code
\n",
"
Reference Period
\n",
"
Value
\n",
"
Flag Codes
\n",
"
Flags
\n",
"
\n",
" \n",
" \n",
"
\n",
"
35745
\n",
"
AUS
\n",
"
Australia
\n",
"
MA
\n",
"
Males
\n",
"
D199G5TT
\n",
"
Population (hist&proj) All ages
\n",
"
VAR1
\n",
"
Baseline
\n",
"
1950
\n",
"
1950
\n",
"
PER
\n",
"
Persons
\n",
"
3
\n",
"
Thousands
\n",
"
NaN
\n",
"
NaN
\n",
"
4122.9
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
35746
\n",
"
AUS
\n",
"
Australia
\n",
"
MA
\n",
"
Males
\n",
"
D199G5TT
\n",
"
Population (hist&proj) All ages
\n",
"
VAR1
\n",
"
Baseline
\n",
"
1951
\n",
"
1951
\n",
"
PER
\n",
"
Persons
\n",
"
3
\n",
"
Thousands
\n",
"
NaN
\n",
"
NaN
\n",
"
4253.7
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
35747
\n",
"
AUS
\n",
"
Australia
\n",
"
MA
\n",
"
Males
\n",
"
D199G5TT
\n",
"
Population (hist&proj) All ages
\n",
"
VAR1
\n",
"
Baseline
\n",
"
1952
\n",
"
1952
\n",
"
PER
\n",
"
Persons
\n",
"
3
\n",
"
Thousands
\n",
"
NaN
\n",
"
NaN
\n",
"
4372.6
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
35748
\n",
"
AUS
\n",
"
Australia
\n",
"
MA
\n",
"
Males
\n",
"
D199G5TT
\n",
"
Population (hist&proj) All ages
\n",
"
VAR1
\n",
"
Baseline
\n",
"
1953
\n",
"
1953
\n",
"
PER
\n",
"
Persons
\n",
"
3
\n",
"
Thousands
\n",
"
NaN
\n",
"
NaN
\n",
"
4462.6
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
35749
\n",
"
AUS
\n",
"
Australia
\n",
"
MA
\n",
"
Males
\n",
"
D199G5TT
\n",
"
Population (hist&proj) All ages
\n",
"
VAR1
\n",
"
Baseline
\n",
"
1954
\n",
"
1954
\n",
"
PER
\n",
"
Persons
\n",
"
3
\n",
"
Thousands
\n",
"
NaN
\n",
"
NaN
\n",
"
4546.1
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" LOCATION Country SEX Sex AGE \\\n",
"35745 AUS Australia MA Males D199G5TT \n",
"35746 AUS Australia MA Males D199G5TT \n",
"35747 AUS Australia MA Males D199G5TT \n",
"35748 AUS Australia MA Males D199G5TT \n",
"35749 AUS Australia MA Males D199G5TT \n",
"\n",
" Age VAR Variant TIME Time Unit Code \\\n",
"35745 Population (hist&proj) All ages VAR1 Baseline 1950 1950 PER \n",
"35746 Population (hist&proj) All ages VAR1 Baseline 1951 1951 PER \n",
"35747 Population (hist&proj) All ages VAR1 Baseline 1952 1952 PER \n",
"35748 Population (hist&proj) All ages VAR1 Baseline 1953 1953 PER \n",
"35749 Population (hist&proj) All ages VAR1 Baseline 1954 1954 PER \n",
"\n",
" Unit PowerCode Code PowerCode Reference Period Code \\\n",
"35745 Persons 3 Thousands NaN \n",
"35746 Persons 3 Thousands NaN \n",
"35747 Persons 3 Thousands NaN \n",
"35748 Persons 3 Thousands NaN \n",
"35749 Persons 3 Thousands NaN \n",
"\n",
" Reference Period Value Flag Codes Flags \n",
"35745 NaN 4122.9 NaN NaN \n",
"35746 NaN 4253.7 NaN NaN \n",
"35747 NaN 4372.6 NaN NaN \n",
"35748 NaN 4462.6 NaN NaN \n",
"35749 NaN 4546.1 NaN NaN "
]
},
"metadata": {
"tags": []
},
"execution_count": 163
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "SgQy9K7jPqaM",
"colab_type": "code",
"colab": {}
},
"source": [
"pop_df = pop_df.pivot_table(values=\"Value\", index=[\"Country\", \"Time\"], aggfunc=np.sum).reset_index([\"Country\", \"Time\"])"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "NbtWU6I3Rz9j",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 634
},
"outputId": "331e00f9-360c-40ca-f4ef-adbe8a0689f3"
},
"source": [
"fighters_df = pd.merge(pop_df, num_fighters_by_year, left_on=[\"Country\", \"Time\"], right_on=[\"country\", \"age_group\"])\n",
"fighters_df"
],
"execution_count": 165,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Country
\n",
"
Time
\n",
"
Value
\n",
"
age_group
\n",
"
country
\n",
"
num_fighters
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Brazil
\n",
"
1965
\n",
"
337555.92
\n",
"
1965
\n",
"
Brazil
\n",
"
11
\n",
"
\n",
"
\n",
"
1
\n",
"
Brazil
\n",
"
1970
\n",
"
384313.20
\n",
"
1970
\n",
"
Brazil
\n",
"
9
\n",
"
\n",
"
\n",
"
2
\n",
"
Brazil
\n",
"
1975
\n",
"
432896.36
\n",
"
1975
\n",
"
Brazil
\n",
"
41
\n",
"
\n",
"
\n",
"
3
\n",
"
Brazil
\n",
"
1980
\n",
"
474250.10
\n",
"
1980
\n",
"
Brazil
\n",
"
68
\n",
"
\n",
"
\n",
"
4
\n",
"
Brazil
\n",
"
1985
\n",
"
531997.16
\n",
"
1985
\n",
"
Brazil
\n",
"
44
\n",
"
\n",
"
\n",
"
5
\n",
"
Canada
\n",
"
1965
\n",
"
80137.00
\n",
"
1965
\n",
"
Canada
\n",
"
4
\n",
"
\n",
"
\n",
"
6
\n",
"
Canada
\n",
"
1970
\n",
"
86984.00
\n",
"
1970
\n",
"
Canada
\n",
"
5
\n",
"
\n",
"
\n",
"
7
\n",
"
Canada
\n",
"
1975
\n",
"
92576.00
\n",
"
1975
\n",
"
Canada
\n",
"
19
\n",
"
\n",
"
\n",
"
8
\n",
"
Canada
\n",
"
1980
\n",
"
98068.00
\n",
"
1980
\n",
"
Canada
\n",
"
30
\n",
"
\n",
"
\n",
"
9
\n",
"
Canada
\n",
"
1985
\n",
"
103370.00
\n",
"
1985
\n",
"
Canada
\n",
"
11
\n",
"
\n",
"
\n",
"
10
\n",
"
Japan
\n",
"
1965
\n",
"
393099.00
\n",
"
1965
\n",
"
Japan
\n",
"
6
\n",
"
\n",
"
\n",
"
11
\n",
"
Japan
\n",
"
1970
\n",
"
414880.00
\n",
"
1970
\n",
"
Japan
\n",
"
9
\n",
"
\n",
"
\n",
"
12
\n",
"
Japan
\n",
"
1975
\n",
"
447760.00
\n",
"
1975
\n",
"
Japan
\n",
"
14
\n",
"
\n",
"
\n",
"
13
\n",
"
Japan
\n",
"
1980
\n",
"
468243.00
\n",
"
1980
\n",
"
Japan
\n",
"
14
\n",
"
\n",
"
\n",
"
14
\n",
"
Japan
\n",
"
1985
\n",
"
484194.00
\n",
"
1985
\n",
"
Japan
\n",
"
7
\n",
"
\n",
"
\n",
"
15
\n",
"
United States
\n",
"
1965
\n",
"
777211.92
\n",
"
1965
\n",
"
United States
\n",
"
40
\n",
"
\n",
"
\n",
"
16
\n",
"
United States
\n",
"
1970
\n",
"
820208.80
\n",
"
1970
\n",
"
United States
\n",
"
82
\n",
"
\n",
"
\n",
"
17
\n",
"
United States
\n",
"
1975
\n",
"
863892.80
\n",
"
1975
\n",
"
United States
\n",
"
173
\n",
"
\n",
"
\n",
"
18
\n",
"
United States
\n",
"
1980
\n",
"
908898.80
\n",
"
1980
\n",
"
United States
\n",
"
278
\n",
"
\n",
"
\n",
"
19
\n",
"
United States
\n",
"
1985
\n",
"
951695.20
\n",
"
1985
\n",
"
United States
\n",
"
159
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Country Time Value age_group country num_fighters\n",
"0 Brazil 1965 337555.92 1965 Brazil 11\n",
"1 Brazil 1970 384313.20 1970 Brazil 9\n",
"2 Brazil 1975 432896.36 1975 Brazil 41\n",
"3 Brazil 1980 474250.10 1980 Brazil 68\n",
"4 Brazil 1985 531997.16 1985 Brazil 44\n",
"5 Canada 1965 80137.00 1965 Canada 4\n",
"6 Canada 1970 86984.00 1970 Canada 5\n",
"7 Canada 1975 92576.00 1975 Canada 19\n",
"8 Canada 1980 98068.00 1980 Canada 30\n",
"9 Canada 1985 103370.00 1985 Canada 11\n",
"10 Japan 1965 393099.00 1965 Japan 6\n",
"11 Japan 1970 414880.00 1970 Japan 9\n",
"12 Japan 1975 447760.00 1975 Japan 14\n",
"13 Japan 1980 468243.00 1980 Japan 14\n",
"14 Japan 1985 484194.00 1985 Japan 7\n",
"15 United States 1965 777211.92 1965 United States 40\n",
"16 United States 1970 820208.80 1970 United States 82\n",
"17 United States 1975 863892.80 1975 United States 173\n",
"18 United States 1980 908898.80 1980 United States 278\n",
"19 United States 1985 951695.20 1985 United States 159"
]
},
"metadata": {
"tags": []
},
"execution_count": 165
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "yEbJnR4kUbhu",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 634
},
"outputId": "4085a84e-ac51-493a-eb6d-7b6a8a51ecde"
},
"source": [
"fighters_df[\"per_capita_fighters\"] = fighters_df[\"num_fighters\"]/fighters_df[\"Value\"]*1000.\n",
"fighters_df"
],
"execution_count": 166,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Country
\n",
"
Time
\n",
"
Value
\n",
"
age_group
\n",
"
country
\n",
"
num_fighters
\n",
"
per_capita_fighters
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Brazil
\n",
"
1965
\n",
"
337555.92
\n",
"
1965
\n",
"
Brazil
\n",
"
11
\n",
"
0.032587
\n",
"
\n",
"
\n",
"
1
\n",
"
Brazil
\n",
"
1970
\n",
"
384313.20
\n",
"
1970
\n",
"
Brazil
\n",
"
9
\n",
"
0.023418
\n",
"
\n",
"
\n",
"
2
\n",
"
Brazil
\n",
"
1975
\n",
"
432896.36
\n",
"
1975
\n",
"
Brazil
\n",
"
41
\n",
"
0.094711
\n",
"
\n",
"
\n",
"
3
\n",
"
Brazil
\n",
"
1980
\n",
"
474250.10
\n",
"
1980
\n",
"
Brazil
\n",
"
68
\n",
"
0.143384
\n",
"
\n",
"
\n",
"
4
\n",
"
Brazil
\n",
"
1985
\n",
"
531997.16
\n",
"
1985
\n",
"
Brazil
\n",
"
44
\n",
"
0.082707
\n",
"
\n",
"
\n",
"
5
\n",
"
Canada
\n",
"
1965
\n",
"
80137.00
\n",
"
1965
\n",
"
Canada
\n",
"
4
\n",
"
0.049915
\n",
"
\n",
"
\n",
"
6
\n",
"
Canada
\n",
"
1970
\n",
"
86984.00
\n",
"
1970
\n",
"
Canada
\n",
"
5
\n",
"
0.057482
\n",
"
\n",
"
\n",
"
7
\n",
"
Canada
\n",
"
1975
\n",
"
92576.00
\n",
"
1975
\n",
"
Canada
\n",
"
19
\n",
"
0.205237
\n",
"
\n",
"
\n",
"
8
\n",
"
Canada
\n",
"
1980
\n",
"
98068.00
\n",
"
1980
\n",
"
Canada
\n",
"
30
\n",
"
0.305910
\n",
"
\n",
"
\n",
"
9
\n",
"
Canada
\n",
"
1985
\n",
"
103370.00
\n",
"
1985
\n",
"
Canada
\n",
"
11
\n",
"
0.106414
\n",
"
\n",
"
\n",
"
10
\n",
"
Japan
\n",
"
1965
\n",
"
393099.00
\n",
"
1965
\n",
"
Japan
\n",
"
6
\n",
"
0.015263
\n",
"
\n",
"
\n",
"
11
\n",
"
Japan
\n",
"
1970
\n",
"
414880.00
\n",
"
1970
\n",
"
Japan
\n",
"
9
\n",
"
0.021693
\n",
"
\n",
"
\n",
"
12
\n",
"
Japan
\n",
"
1975
\n",
"
447760.00
\n",
"
1975
\n",
"
Japan
\n",
"
14
\n",
"
0.031267
\n",
"
\n",
"
\n",
"
13
\n",
"
Japan
\n",
"
1980
\n",
"
468243.00
\n",
"
1980
\n",
"
Japan
\n",
"
14
\n",
"
0.029899
\n",
"
\n",
"
\n",
"
14
\n",
"
Japan
\n",
"
1985
\n",
"
484194.00
\n",
"
1985
\n",
"
Japan
\n",
"
7
\n",
"
0.014457
\n",
"
\n",
"
\n",
"
15
\n",
"
United States
\n",
"
1965
\n",
"
777211.92
\n",
"
1965
\n",
"
United States
\n",
"
40
\n",
"
0.051466
\n",
"
\n",
"
\n",
"
16
\n",
"
United States
\n",
"
1970
\n",
"
820208.80
\n",
"
1970
\n",
"
United States
\n",
"
82
\n",
"
0.099975
\n",
"
\n",
"
\n",
"
17
\n",
"
United States
\n",
"
1975
\n",
"
863892.80
\n",
"
1975
\n",
"
United States
\n",
"
173
\n",
"
0.200256
\n",
"
\n",
"
\n",
"
18
\n",
"
United States
\n",
"
1980
\n",
"
908898.80
\n",
"
1980
\n",
"
United States
\n",
"
278
\n",
"
0.305865
\n",
"
\n",
"
\n",
"
19
\n",
"
United States
\n",
"
1985
\n",
"
951695.20
\n",
"
1985
\n",
"
United States
\n",
"
159
\n",
"
0.167070
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Country Time Value age_group country num_fighters \\\n",
"0 Brazil 1965 337555.92 1965 Brazil 11 \n",
"1 Brazil 1970 384313.20 1970 Brazil 9 \n",
"2 Brazil 1975 432896.36 1975 Brazil 41 \n",
"3 Brazil 1980 474250.10 1980 Brazil 68 \n",
"4 Brazil 1985 531997.16 1985 Brazil 44 \n",
"5 Canada 1965 80137.00 1965 Canada 4 \n",
"6 Canada 1970 86984.00 1970 Canada 5 \n",
"7 Canada 1975 92576.00 1975 Canada 19 \n",
"8 Canada 1980 98068.00 1980 Canada 30 \n",
"9 Canada 1985 103370.00 1985 Canada 11 \n",
"10 Japan 1965 393099.00 1965 Japan 6 \n",
"11 Japan 1970 414880.00 1970 Japan 9 \n",
"12 Japan 1975 447760.00 1975 Japan 14 \n",
"13 Japan 1980 468243.00 1980 Japan 14 \n",
"14 Japan 1985 484194.00 1985 Japan 7 \n",
"15 United States 1965 777211.92 1965 United States 40 \n",
"16 United States 1970 820208.80 1970 United States 82 \n",
"17 United States 1975 863892.80 1975 United States 173 \n",
"18 United States 1980 908898.80 1980 United States 278 \n",
"19 United States 1985 951695.20 1985 United States 159 \n",
"\n",
" per_capita_fighters \n",
"0 0.032587 \n",
"1 0.023418 \n",
"2 0.094711 \n",
"3 0.143384 \n",
"4 0.082707 \n",
"5 0.049915 \n",
"6 0.057482 \n",
"7 0.205237 \n",
"8 0.305910 \n",
"9 0.106414 \n",
"10 0.015263 \n",
"11 0.021693 \n",
"12 0.031267 \n",
"13 0.029899 \n",
"14 0.014457 \n",
"15 0.051466 \n",
"16 0.099975 \n",
"17 0.200256 \n",
"18 0.305865 \n",
"19 0.167070 "
]
},
"metadata": {
"tags": []
},
"execution_count": 166
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "TvaiaVC5SliJ",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 732
},
"outputId": "b64641df-3af9-49de-e09d-0ca94a190bda"
},
"source": [
"fig, ax = plt.subplots(figsize=(20, 12))\n",
"\n",
"\n",
"sns.lineplot(x=fighters_df[\"Time\"], y=fighters_df[\"per_capita_fighters\"], hue=fighters_df[\"Country\"], ax=ax)\n",
"#ax.set_ylim([0, 50])"
],
"execution_count": 167,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
]
},
"metadata": {
"tags": []
},
"execution_count": 167
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJYAAAK5CAYAAADtvaSqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd1xWZePH8c/hBgEFHLhQQHwsR4qS\n4ujJErVcqW23ZSaKI3c5Mkfb0XBmoKaW27IyRz2kZqVm2M9KUyuTJaIMFwrIOL8/MB97tFz3zWF8\n369Xr7zPuK4vUvry63WuY5imiYiIiIiIiIiIyI1ysjqAiIiIiIiIiIgUTiqWRERERERERETkpqhY\nEhERERERERGRm6JiSUREREREREREboqKJRERERERERERuSnOVgewp/Lly5sBAQFWxxARERERERER\nKTL27NmTbJpmhaudK1LFUkBAAFFRUVbHEBEREREREREpMgzDiPm7c3oUTkREREREREREboqKJRER\nERERERERuSkqlkRERERERERE5KYUqT2WRERERERERKTgy8rKIj4+noyMDKujyGXc3Nzw9fXFxcXl\nuu9RsSQiIiIiIiIi+So+Ph5PT08CAgIwDMPqOAKYpklKSgrx8fFUr179uu/To3AiIiIiIiIikq8y\nMjLw9vZWqVSAGIaBt7f3Da8iU7EkIiIiIiIiIvlOpVLBczPfExVLIiIiIiIiIiJyU1QsiYiIiIiI\niEixk5iYSLdu3ahRowaNGjWiQ4cO/Prrr3Ybf9u2bezYscNu4xVUKpZEREREREREpFgxTZOHH36Y\nkJAQDh8+zJ49e3jttdc4fvy43eb4p2IpOzvbbvNYTcWSiIiIiIiIiBQrW7duxcXFhbCwsEvHGjRo\nQPPmzXn22WepV68egYGBrFq1CsgriTp27Hjp2iFDhrB48WIAAgICmDRpEg0bNiQwMJCDBw8SHR3N\n/PnzeeuttwgKCuLrr7+mT58+hIWF0bRpU5577jluv/12kpKSAMjNzeW222679LkwcbY6gIiIiIiI\niIhIftq3bx+NGjW64vhHH33E3r17+fHHH0lOTqZx48bce++91xyvfPny/PDDD8ybN48ZM2awYMEC\nwsLC8PDwYPTo0QAsXLiQ+Ph4duzYgc1mo3Tp0ixbtozhw4cTGRlJgwYNqFChgt2/VkfTiiURERER\nEREREeCbb76he/fu2Gw2KlWqRIsWLfj++++ved8jjzwCQKNGjYiOjv7b6x5//HFsNhsAffv2ZenS\npQAsWrSIp5566ta/AAuoWBIRERERERGRYqVu3brs2bPnuq93dnYmNzf30ueMjIy/nHd1dQXAZrP9\n4/5JpUqVuvRjPz8/KlWqxJYtW9i9ezft27e/7jwFiYolERERERERESlWWrVqRWZmJuHh4ZeO/fTT\nT5QpU4ZVq1aRk5NDUlIS27dvp0mTJlSrVo1ffvmFzMxMTp06xZdffnnNOTw9PTl79uw/XtOvXz96\n9er1l5VMhY2KJREREREREREpVgzDYN26dURGRlKjRg3q1q3LuHHj6NGjB/Xr16dBgwa0atWKadOm\nUblyZfz8/OjSpQv16tWjS5cu3Hnnndeco1OnTqxbt+7S5t1X07lzZ9LS0grtY3AAhmmaVmewm+Dg\nYDMqKsrqGCIiIiIiIiLyDw4cOECdOnWsjmG5qKgoRowY8bfFkxWu9r0xDGOPaZrBV7teb4UTERER\nEREREclnr7/+Ou+88w7Lli2zOsot0aNwIiIiIiIiIiL5bOzYscTExNC8eXOro9wSFUsiIiIiIiIi\nInJTVCyJiIiIiIiIiMhNUbEkIiIiIiIiIiI3RcWSiIiIiIiIiIjcFBVLIiIiIiIiIlLs2Gw2goKC\naNCgAQ0bNmTHjh12Gbdfv3788ssvAAQEBJCcnGyXcQsqZ6sDiIiIiIiIiIjkN3d3d/bu3QvA559/\nzrhx4/jqq6/+ck12djbOzjdWnSxYsMBuGQsDrVgSERERERERkWLtzJkzlC1bFoBt27Zxzz330Llz\nZ+644w4AHnroIRo1akTdunUJDw8H4NNPPyUoKIigoCBq1apF9erVAQgJCSEqKsqaL8QCWrEkIiIi\nIiIiIpaZsn4/vyScseuYd1TxYlKnuv94TXp6OkFBQWRkZHDs2DG2bNly6dwPP/zAvn37LpVFixYt\noly5cqSnp9O4cWMeffRROnfuTOfOnQHo0qULLVq0sOvXUFioWBIREREREXEk0yRt8RSMkl6U6jrS\n6jQictHlj8Lt3LmTJ554gn379gHQpEmTS6USwKxZs1i3bh0AcXFx/Pbbb3h7ewMwbdo03N3dGTx4\ncD5/BQWDiiUREREREREHMS+cJ3n4wyRviQXDxM/TD48Oj1sdS6RAudbKovxw1113kZycTFJSEgCl\nSpW6dG7btm1ERkayc+dOSpYsSUhICBkZGQBERkayZs0atm/fbknugkB7LImIiIiIiDhA7ok/SHj8\nbpK3xFK6STVcy+RydOwk0i+uiBCRguPgwYPk5ORcWoV0udOnT1O2bFlKlizJwYMH2bVrFwAxMTEM\nHjyYNWvW4O7unt+RCwwVSyIiIiIiInaW/ePnxD7WnjOHMqjQuwM+SzbhN3kgNucs4p7uw4XYWKsj\nihR7f+6xFBQURNeuXVmyZAk2m+2K69q1a0d2djZ16tRh7NixNGvWDIDFixeTkpLCQw89RFBQEB06\ndMjvL6FAMEzTtDqD3QQHB5vFaed1EREREREpeDI/nkbcSwvIzrRRZeJzeHV5Ku9Ebg6Z01sRs/w4\nThV8CVi1CuerrI4QKQ4OHDhAnTp1rI4hV3G1741hGHtM0wy+2vVasSQiIiIiImIP2RdIm9GT6BcW\nkmu4Um3xov+WSgBONlyfnIPfvSfJPn6MuP4DyD13zrq8IiJ2oGJJRERERETkVp09TurwEOIW7sGl\nYjmqf7IJ9+C7rryuciDunfpTtVkSGQcOED90GOaFC/mfV0TETlQsiYiIiIiI3AIzdjeJfUI4HnkS\nj4a1Cfg0Epeqvn9/Q8hYPO+ohE9ICc59+y0JEyZg5ubmX2ARETtSsSQiIiIiInKTcnYsJq5Pd07u\nh3KPPYDv0g9xuuw15VdVohQ88AZlKv5BhQcbcubT9SS9+Wb+BBYRsTNnqwOIiIiIiIgUOjnZZK0a\nRdzMDWSeKUHl8aMp+8TT139/zTZwx0N4H9xE9iNPkLJgIc4VKlDuyScdl1lExAEcvmLJMIx2hmEc\nMgzjd8Mwxl7lfJhhGD8bhrHXMIxvDMO447Jz4y7ed8gwjLaOzioiIiIiInJN51NJn9qeI9M2kZXp\njn9E+I2VSn9q9zqGiyuVav6K5/33c/y11zmzcaP984qIOJBDiyXDMGzAXKA9cAfQ/fLi6KLlpmkG\nmqYZBEwD3rx47x1AN6Au0A6Yd3E8ERERERERayTu48xz9xCzLA4nL28CPvyYUs3vubmxvHyg9USM\n6K+o8mRTSgYHkzBmLOd27bJvZhG5qsTERLp160aNGjVo1KgRHTp04Ndff3XYfB4eHg4b20qOXrHU\nBPjdNM0/TNO8AKwEHrz8AtM0z1z2sRRgXvzxg8BK0zQzTdM8Avx+cTwREREREZF8Z+77iORhHTka\nmYtbnVoEfLIR1xo1bm3Q4L5QNRinLRPxfeNlSgQEED94CBkHDtgntIhclWmaPPzww4SEhHD48GH2\n7NnDa6+9xvHjx62OVug4uliqCsRd9jn+4rG/MAxjsGEYh8lbsTT0Bu/tbxhGlGEYUUlJSXYLLiIi\nIiIiAkBuDrmbJ5EwagRJP7rj1f5+/Jevwbls2Vsf28kGnd6G9JPYvpuBX0Q4Tp6exPbvz4X4o7c+\nvohc1datW3FxcSEsLOzSsQYNGnDnnXfSunVrGjZsSGBgIJ988gkA0dHR1KlTh9DQUOrWrUubNm1I\nT08HICIigsaNG9OgQQMeffRRzp8/D8CRI0e46667CAwMZMKECZfmSUtLu+ochVWB2LzbNM25wFzD\nMHoAE4Dr3rHONM1wIBwgODjYvMblIiIiIiIi1y/jNNlLnyJ+6V7Sk0tS4ZnBeA8ajGEY9pujciDc\nNRh2zMKlQXf8F0QQ3bMXcf36UW3FcvsUWCIF2aaxkPizfcesHAjtX//b0/v27aNRo0ZXHHdzc2Pd\nunV4eXmRnJxMs2bN6Ny5MwC//fYbK1asICIigi5duvDhhx/Sq1cvHnnkEUJDQwGYMGECCxcu5Jln\nnmHYsGEMHDiQJ554grlz515zDrv+upKPHL1i6Sjgd9ln34vH/s5K4KGbvFdERERERMR+kn4lc2oI\n0eH7yDhdkqpvvkH5wUMc84e/kLFQ2h8+G4FrgD9+78wj69gx4sLCyL24+kFEHM80TcaPH0/9+vW5\n7777OHr06KXH46pXr05QUBAAjRo1Ijo6Gsgrqe655x4CAwNZtmwZ+/fvB+Dbb7+le/fuAPTu3fu6\n5iiMHL1i6XvgdsMwqpNXCnUDelx+gWEYt5um+dvFjw8Af/74U2C5YRhvAlWA24HdDs4rIiIiIiIC\nhzZzbk4Y8V+5YZQqS7WF4bg3aOC4+UqUggfegOWPw45ZlLx3NFXfmEH80GHEjxiB35w5GC4ujptf\nxEr/sLLIUerWrcvatWuvOL5s2TKSkpLYs2cPLi4uBAQEkJGRAYCrq+ul62w226VH4fr06cPHH39M\ngwYNWLx4Mdu2bbt03dWK6H+aozBy6Iol0zSzgSHA58ABYLVpmvsNw3jRMIzOFy8bYhjGfsMw9gIj\nufgYnGma+4HVwC/AZmCwaZo5jswrIiIiIiLFnGnCV9M5+VJfYiPdcfH7F9XXfuTYUulPNdvAHQ/B\n9umQchjP++6j8sSJnPtqO8cmTcY0tfOHiL20atWKzMxMwsPDLx376aefiImJoWLFiri4uLB161Zi\nYmKuOdbZs2fx8fEhKyuLZcuWXTp+9913s3LlSoC/HD99+vQNz1GQOfpROEzT3GiaZk3TNGuYpvnK\nxWMTTdP89OKPh5mmWdc0zSDTNFteLJT+vPeVi/fVMk1zk6OzioiIiIhIMZaZhrmyN8ffnEViVGlK\nNb+baqtW41L1incIOU6718FWAjaMAtOkbLeulB88mNMffUTSzJn5l0OkiDMMg3Xr1hEZGUmNGjWo\nW7cu48aNo0OHDkRFRREYGMjSpUupXbv2Ncd66aWXaNq0KXffffdfrp85cyZz584lMDCQo0f/u7NP\nz549b3iOgswoSq13cHCwGRUVZXUMEREREREpbFKPkLO0BwmfJpKW4EbZ3r2oNGYMhrMF7zvaHQEb\nR8MjC6D+45imSeLESZxas4ZKL0ygXM+e+Z9JxM4OHDhAnTp1rI4hV3G1741hGHtM0wy+2vUF4q1w\nIiIiIiIiljm8lazFTxEX6Urm6ZJUmvg85Xr0uPZ9jhLcF35cAZ+Pg9taY5QsR+VJE8lOSeH4y6/g\n7F0er3ZtrcsnInIZhz8KJyIiIiIiUiCZJuyYQ/rMLhzZUJKsCx74vfuutaUSgJMNOr4N51MhcjIA\nhrMzVd+YgXtQEAnPPsu53XqvkYgUDCqWRERERESk+MlKh3UDOLPwJWK2VMCpTGUCVq7E457mVifL\n41Mf7hoEPyyBmJ0AOLm74/fOPFz8/YkfPISMQ79aHFJERMWSiIiIiIgUN6fjMRe2JXnlBo5+Ww63\neg0IWLMG19tvtzrZX4WMg9J+8NlwyL4AgK1MGfwjwnFydycuNJSshASLQ4pIcadiSUREREREio+Y\nHZjvhHBsfQJJP3nh9cAD+C9ZjLO3t9XJrlSiFHSYAUkHYcesS4ddqlTBLyKC3PR0YkP7k3PqlIUh\nRaS4U7EkIiIiIiLFw/cLyQ7vTOwXrpw+7EL5IUOoMmM6Tq6uVif7e7XawR0PwvbpkHL40mG3WjXx\nnTuHrNhY4gYOIjcjw8KQIlKcqVgSEREREZGiLfsCrB9G5opnid5SlfRkZ6rMmEGFIYMxDMPqdNfW\nbio4ucCGUXkbjl9UqkkTqkyfTvrevRwdOQozO9vCkCKFj4eHh9URigQVSyIiIiIiUnSdPQ5LOnJu\n43Kit/qSa3jgv2QxpTs+YHWy6+flA/dNgj+2ws9r/3qqXVsqPf88aVu2kPjiS5iXFU8iIvlBxZKI\niIiIiBRNR/dAeAinvj5E7PaKuPhWI2D1akreeafVyW5ccF+o2gg+HwfnU/9yqlyvnngPGMCp1atJ\nnjvPooAihVNaWhqtW7emYcOGBAYG8sknnwAQHR1N7dq16dmzJ3Xq1OGxxx7j/PnzALz44os0btyY\nevXq0b9//0uFbkhICGPGjKFJkybUrFmTr7/+2rKvKz85Wx1ARERERETE7vYux/xkOCd+KU/qjyUp\n1fzfVH3rTWyenlYnuzlONuj4NoSHQORk6DzrL6crDB9G9okTJM+Zg3OFCpTt2sWSmCI3Y+ruqRxM\nPWjXMWuXq82YJmOueZ2bmxvr1q3Dy8uL5ORkmjVrRufOnQE4dOgQCxcu5O6776Zv377MmzeP0aNH\nM2TIECZOnAhA7969+eyzz+jUqRMA2dnZ7N69m40bNzJlyhQiIyPt+nUVRFqxJCIiIiIiRUdONmwa\nS+7aQcRH+ZH6o0nZHj3wm/9O4S2V/uRTH+4aBD8sgZidfzllGAY+L06hVIt7SZwyhbNffmlRSJHC\nxTRNxo8fT/369bnvvvs4evQox48fB8DPz4+7774bgF69evHNN98AsHXrVpo2bUpgYCBbtmxh//79\nl8Z75JFHAGjUqBHR0dH5+8VYRCuWRERERESkaDifCmueJGv/N8TtqU3msbNUev55yvXuZXUy+wkZ\nB/s/hs+Gw4CvwbnEpVOGiwu+b71FTJ+nODpyFP7vLaJkw4YWhhW5PtezsshRli1bRlJSEnv27MHF\nxYWAgAAyLr5l8X839zcMg4yMDAYNGkRUVBR+fn5Mnjz50vUArhffMmmz2cguJhvqa8WSiIiIiIgU\nfon7ILwF6XujiP76drJOZeP3zryiVSoBlCgFHWZA0kHYMeuK004lS+L37nxcfHyIGziIzN9/tyCk\nSOFx+vRpKlasiIuLC1u3biUmJubSudjYWHbuzFsduHz5cpo3b36pRCpfvjxpaWmsXbv2quMWJyqW\nRERERESkcNu/Dhbez9nDWcRsrQTuHlRbvhyPFi2sTuYYtdrBHQ/C9umQcviK085ly+K3IAKjhAux\nof3JSky0IKRIwZadnY2rqys9e/YkKiqKwMBAli5dSu3atS9dU6tWLebOnUudOnU4efIkAwcOpEyZ\nMoSGhlKvXj3atm1L48aNLfwqCgajKL2OMjg42IyKirI6hoiIiIiI5IfcHNj6Cub2N0g9VocTX5/B\nrX4gfhc3sC7SzhyDOY3BNxh6r4P/eWQHIOPAAWJ69calShWqffA+ttKlLQgqcnUHDhygTp06ls3/\n448/Ehoayu7du696Pjo6mo4dO7Jv3758Tma9q31vDMPYY5pm8NWu14olEREREREpfDJOw4rumNve\n4NgfwZzYfhrPdm2ptmRJ0S+VALx84L5J8MdW+Pnqj+K41amD79w5ZEZHEzd4MLmZmfkcUqRgmj9/\nPt27d+fll1+2OkqRoBVLIiIiIiJSuCT9Ciu7k5MYQ/wvDTl/IA7vgWFUeOYZDKdi9HfnuTmw8H44\nFQuDd0PJcle97MzGjRwdOQrP+++n6ttvYdhs+RxU5EpWr1iSv6cVSyIiIiIiUnQd2gwLWnMh8RTR\nu+qR/nsiVaa+TsVhw4pXqQTgZIOOb+e9DS9y8t9e5tWhA5XGjeXsf/7D8VdepSgtLhAR6zlbHUBE\nREREROSaTBO2z4Ctr3AupzZH/5MLtgv4L36Pko0aWZ3OOj714a5BsGM2NOgO1e666mXlnnySrBMn\nSF24COeKFSkfNiCfg4pIUVXMKn0RERERESl0MtNg9ROw9WVOZd1L7Lpz2MpXIGD1quJdKv0pZByU\n9oPPhkP2hb+9rOKoUXh17kTS229z6sOP8jGgiBRlKpZERERERKTgSj0CC9tgHviME2ce4NiHv1Gq\nSWMCVq6ghJ+f1ekKhhKloMMMSDoIO2b97WWGkxNVXn6ZUnffzbGJEzm7bVv+ZRSRIkvFkoiIiIiI\nFEyHt0J4CLmpRzka246Ujf9Hma5d8Xv3XWxeXlanK1hqtYM7HoTt0yH1j7+9zChRgqozZ+JWuzZH\nh48g/ccf8zGkSMERHR1NvXr1/nJs8uTJzJgx4x/vi4qKYujQoQBs27aNHTt23PDcAQEBJCcnX3F8\n0aJFBAYGUr9+ferVq8cnn3wCwOLFi0lISLjmuNd7nb2pWBIRERERkYLFNGHHHPjgEbKcKhMTVZ+z\nO3+k4tgxVJ48CcPFxeqEBVO7qeDkAhtG5f0c/g2bRyn83p2Pc8WKxA0II/OPI/kYUqRwCw4OZtas\nvJWBN1ssXU18fDyvvPIK33zzDT/99BO7du2ifv36gIolERERERGR65eVDusGwBfPk1G6JdEb3MiM\nTcB37ly8+/TBMAyrExZcXj5w3yQ4vAX2ffiPlzqXL4//ggiw2Yjr14+s4yfyKaRI4RASEsKYMWNo\n0qQJNWvW5OuvvwbyyqSOHTsSHR3N/PnzeeuttwgKCuLrr78mKSmJRx99lMaNG9O4cWO+/fZbAFJS\nUmjTpg1169alX79+V30z44kTJ/D09MTDwwMADw8Pqlevztq1a4mKiqJnz54EBQWRnp7Oiy++SOPG\njalXrx79+/fHNM2rXrdnzx5atGhBo0aNaNu2LceOHQNg1qxZ3HHHHdSvX59u3brd8s+V3gonIiIi\nIiIFw+l4WNkTju3lbLknOPret9hKlyZg+TLcate2Ol3hENwXflwBm8fCba3BvezfXlrC3x+/d98l\n5okniBswgGrvL8Xm6ZmPYUXyJL76KpkHDtp1TNc6tak8fvwtjZGdnc3u3bvZuHEjU6ZMITIy8tK5\ngIAAwsLC8PDwYPTo0QD06NGDESNG0Lx5c2JjY2nbti0HDhxgypQpNG/enIkTJ7JhwwYWLlx4xVwN\nGjSgUqVKVK9endatW/PII4/QqVMnHnvsMebMmcOMGTMIDg4GYMiQIUycOBGA3r1789lnn11xXVZW\nFs888wyffPIJFSpUYNWqVTz//PMsWrSI119/nSNHjuDq6sqpU6du6ecItGJJREREREQKgpgdEB6C\nmXyYlJJhxL/zJa41ahCwepVKpRvhZIOOb8P5VIicfM3L3evVxXfWLDJ//534Ic+Qe+Hv3yonUpT8\n3erHy48/8sgjADRq1Ijo6OhrjhkZGcmQIUMICgqic+fOnDlzhrS0NLZv306vXr0AeOCBByhb9srC\n12azsXnzZtauXUvNmjUZMWIEkydPvuo8W7dupWnTpgQGBrJlyxb2799/xTWHDh1i37593H///QQF\nBfHyyy8THx8PQP369enZsycffPABzs63vt5IK5ZERERERMRa3y+ETc9hevqTmPQApz79FM82bagy\n9XWc3N2tTlf4+NSHZgNh5xxo0B38m/3j5R7N76bKq6+Q8NwYEsaMoeobb2A4aQ2C5J9bXVl0M7y9\nvTl58uRfjqWmplK9evVLn11dXYG80ic7O/uaY+bm5rJr1y7c3NxuKpNhGDRp0oQmTZpw//3389RT\nT11RLmVkZDBo0CCioqLw8/Nj8uTJZGRkXDGWaZrUrVuXnTt3XnFuw4YNbN++nfXr1/PKK6/w888/\n31LBpF8tRERERETEGtkXYP0w2DCSnKotiNsbyKlPv8C7f3+qvv2WSqVbETIOSvvB+uF5P8/XULpz\nZyo++yxnN23m+GuvX3UPGJGixMPDAx8fH7Zs2QLklUqbN2+mefPm1z2Gp6cnZ8+evfS5TZs2zJ49\n+9LnvXv3AnDvvfeyfPlyADZt2nRFoQWQkJDADz/88Jd7q1WrdsU8f5ZI5cuXJy0tjbVr1141T61a\ntUhKSrpULGVlZbF//35yc3OJi4ujZcuWTJ06ldOnT5OWlnbdX/PVaMWSiIiIiIjkv7PHYXVviPuO\nC7VCiXv/Fy7E/Y7Pq69S5pGHrU5X+Ll6QIcZsKIr7JwN94y65i3l+j5F9okTpC5Zgkulinj365cP\nQUWss3TpUgYPHszIkSMBmDRpEjVq1Lju+//cA+mTTz5h9uzZzJo1i8GDB1O/fn2ys7O59957mT9/\nPpMmTaJ79+7UrVuXf//73/j7+18xVlZWFqNHjyYhIQE3NzcqVKjA/PnzAejTpw9hYWG4u7uzc+dO\nQkNDqVevHpUrV6Zx48aXxvjf69auXcvQoUM5ffo02dnZDB8+nJo1a9KrVy9Onz6NaZoMHTqUMmXK\n3NLPo1GUmujg4GAzKirK6hgiIiIiIvJPju6Blb0g4xTnb3+W+DfXgGlSdfYsSjVpYnW6omVVb/jt\nCxi0E8r965qXm7m5JIx+ljMbN1Jl6uuUfvDBfAgpxdGBAweoU6eO1THkKq72vTEMY49pmsFXu16P\nwomIiIiISP7ZuxwWtQebM6f9JhD70mJsZcoQsGqlSiVHaD8VnFxgwyi4jkUFhpMTPq+/RslmzUh4\nfgJpX3+TDyFFpDBTsSQiIiIiIo6Xkw2bxsLHAzH9mnAiqwcJr87BvVEjAlatpERAgNUJiyavKtB6\nIhzeAvs+vK5bnEqUwHfObFxvu434YcNI/3mfg0OKSGGmYklERERERBzrXAp88DB89w65d/bn6N7b\nSFm4lDKPP4Z/RDi20qWtTli0NX4aqjSEzWMh/cpNg6/G5uGBX/i7OJctS9yAAVyIiXFwSCmOitLW\nPEXFzXxPVCyJiIiIiIjjJP4MESEQ+x3ZIdOJWRbL2c+/oOKzz1L5xRcxXFysTlj0Odmg00w4nwqR\nk6/7NpeKFfFbEAGmSWy/ULKTkx2XUYodNzc3UlJSVC4VIKZpkpKSgpub2w3dp827RURERETEMfZ9\nBJ8MBrcyZDR+lbjJs8k5eYqq06fhed99Vqcrfj5/HnbOgb6fg3+z674t/ccfienzFK7Vq+O/dCk2\nj1IODCnFRVZWFvHx8WRkZFgdRS7j5uaGr68vLv9T+v/T5t0qlkRERERExL5yc2DLy/DNm+DXlLSq\ngzk6/kWcPDzwfWce7nXrWhNE/jcAACAASURBVJ2weMpMg3nNoIQHDNgOziWu+9a0r74ibtBgSjVt\nit/8dzBKXP+9IlL46a1wIiIiIiKSP9JPwYpu8M2bmHc+QaqtO3Ejx1MiIICANatVKlnJ1QM6zICk\nA7Bz9g3d6tGiBT4vvcS5HTtIeH4CZm6ug0KKSGGjYklEREREROwj6RAsaA2Ht2C2m8HxHytw/PVp\neLRqSbUP3selUiWrE0qtdlCnM3w1DVL/uKFbyzzyMBVGjODM+vWcmPGGgwKKSGGjYklERERERG7d\noU0Q0RoyTpPz2CriFuzm5PIVePd7Gt9Zs3AqWdLqhPKn9lPByQU2jIIb3BrFu38oZXv2JHXRIlLe\nW+yYfCJSqKhYEhERERGRm5ebC19NhxXdwbsGFzquIPq5tzm3axc+L79ExdGjMZz0x44CxasKtJ4I\nh7fAvg9v6FbDMKg0fhyebdtyYupUTn+2wUEhRaSwcLY6gIiIiIiIFFKZafBxGBxYD/W7ct6vL/FP\nD8fMycF/wQJKNWtqdUL5O42fhh9XwOaxcFtrcC973bcaNhtVpk0lLjWVhHHjcC5XllL//rcDw4pI\nQaa/OhARERERkRuX+gcsvB8OboA2r3DapROxTw/AydODgJUrVCoVdE426DQTzqdC5OQbv93VFd+5\nc3CtXp34Ic+Q8csv9s8oIoWCiiUREREREbkxh7dAeEs4k4DZ80OS9kDCs8/h3qABAStX4lq9utUJ\n5Xr41IdmA2HPYojddcO327y88IsIx6lMaWL7D+BCXJz9M4pIgadiSUREREREro9pwo7Z8MGj4FWF\n3Ce/IOGdjSTPnUvphx/Gf+ECnMte/yNVUgCEjIPSfrB+OGRfuOHbXSpVwj8iAjMri7h+oWSnpjog\npIgUZCqWRERERETk2rLSYd0A+GIC1O5I9kOriB0xmTMbNlBh5Eh8Xn0Fo0QJq1PKjXL1gA4zIOkA\n7Jx9c0PUqIHfO++QlZhI3IAwcs+ds3NIESnIVCyJiIiIiMg/OxUHi9rCT6uh1QQygl4gundfMg4e\npOrMmZTvH4phGFanlJtVqx3U6QxfTcvbO+smlGx4J1XfepOM/fuJHzECMyvLziFFpKBSsSQiIiIi\nIn8vZgeEh0DKH9B9BWlGM2J69CD3QibV3n8fr7ZtrE4o9tB+Kji5wIZReY883gTPVq2oPHkS57Z/\nzbEXJmLe5DgiUrioWBIRERERkSuZJny/AJZ0AvcyELqF1KhU4gaE4eLvT/XVq3EPrGd1SrEXryrQ\nemLexuz7PrzpYcp26UL5Z4Zw+uOPSXrrbTsGFJGCSsWSiIiIiIj8VXYmrB+Wt3qlRivMPp+T+O4a\njr/0Mh4tWhDwwfu4+PhYnVLsrfHTUKUhbB4H6SdvepjygwZRpmtXUsLDSX3/AzsGFJGCSMWSiIiI\niIj819nEvFVKPyyBe0aR02kBcaPGc/KDDyjXpw++c2bjVKqU1SnFEZxs0GkmnE+ByCk3PYxhGFSe\n+AIe97Xm+KuvcmbzZjuGFJGCRsWSiIiIiIjkid+Tt59S4s/w+GKyaj9NTM/enPt2B5WnTKHS2DEY\nNpvVKcWRfOpDs4Gw5z2I/e6mhzFsNqrOmIH7nXeS8OxznPtutx1DikhBomJJRERERERg73J4rz3Y\nXODpL0jPqs6RLl3JSkzEPyKcsl27WJ1Q8kvIOCjtB58Nh5ybf7ubk5sbfvPm4lLNn/jBg8k4dMiO\nIUWkoFCxJCIiIiJSnOVkwaYx8PFA8G8Kods480McMU88iVPJkgSsXEGpf//b6pSSn1w9oMN0OPEL\n7Jh9S0PZypTBPyICp1KliOsXStbRo3YKKSIFhYolEREREZHi6lwKvP8wfDcfmg7E7PkRSUtWcXTk\nKNwCAwlYvQrXGjWsTilWqNUe6nSCr6ZC6pFbGsrFxwf/BRHkZmYS2y+U7JM3vzG4iBQ8KpZERERE\nRIqjxJ8hIgTidsND75Db+kUSxj9P8qzZlH6wM/7vLcK5bFmrU4qV2k8DJ5e8twOa5i0N5Xr77fjN\nm0vW0aPEhw0kNz3dTiFFxGoqlkREREREipt9H8KC+yEnG57aRLZ/O2L7PMWZT9dTYfgwfF5/HacS\nJaxOKVbzqgKtX4DDX+b9N3OLSgYHU2XGdNJ/+omjI0ZiZmfbIaSIWE3FkoiIiIhIcZGbA5GTYW3f\nvLd/9d9GZmYZort2I2P/fqq+9Sblw8IwDMPqpFJQNO4HVe6EzeMg/dYfYfNq04bKE18gbds2EqdM\nwbzFlVAiYj0VSyIiIiIixUH6KVjeFb55Cxo+CU+uJ+2n34nu1p3c9HSqLV2CV/v2VqeUgsbJBp1m\nwvlkiJxilyHLdu+O98AwTq1ZS/LsOXYZU0Sso2JJRERERKSoSzoEEa3gj63wwJvQeRYn164jrv8A\nXHx8qL5qJe4NGlidUgoqnwbQbBDseQ9iv7PLkBWGDqX0o4+QPG8eJ1eutMuYImINFUsiIiIiIkXZ\noU0Q0Royz8CT6zEb9uH4a6+ROHkKpZrfTbXly3CpWtXqlFLQhYwDL1/4bDjkZN3ycIZh4DNlCh4h\nISS++BJn/vMfO4QUESuoWBIRERERKYpyc+Gr6bCiO3jXgP7byPFuQPzgIaQuWUrZJ3rjN28eNg8P\nq5NKYeDqAQ/MgBO/wI7ZdhnScHam6ltv4h4YSMKo0Zzfs8cu44pI/lKxJCIiIiJS1GSmwZonYOvL\nUL8L9N1M1nkbMb16kfb111SeNJHK48dj2GxWJ5XCpFZ7qNMJvpoKqUfsMqSTuzu+89/BpWpV4gYO\nIvO33+wyrojkHxVLIiIiIiJFSeofsPB+OLgB2rwCD79L+sHfOdKlC1nx8fjNn0/Z7t2tTimFVftp\n4OQCG0aBnd7o5ly2LH4RETi5uhIb2p+sY8fsMq6I5A8VSyIiIiIiRcXhLRDeEs4kQK+P4N9DOPP5\nF8T0fgKnEq4ErFiOxz3NrU4phZlXFWj9Ahz+EvZ9aLdhS/hWxS8inNy0NGJDQ8k5fdpuY4uIY6lY\nEhEREREp7Ewzb9+bDx7N+4N//22Y/woh+d1wjg4fjlvt2gSsXoXr7bdbnVSKgsb9oMqdsHkcpJ+0\n27ButWvjO2cOWTGxxA0aTG5Ght3GFhHHUbEkIiIiIlKYZaXDugHwxQSo3RGe/g+mR1WOjRtP0ltv\n4dWxI/5LFuPs7W11UikqnGzQaSacT4bIKXYdulSzplSZNpX0H37g6OjRmDk5dh1fROxPxZKIiIiI\nSGF1Kg4WtYWfVkOrCdBlKdnns4jt+zSnP/6Y8s8Mocr0aTi5ulqdVIoanwbQbBDseQ9iv7Pr0F7t\n21Np3DjSIr8k8cWXMO20l5OIOIaz1QFEREREROQmxOyAVb0hOxO6r4Ba7cn84whxA8PIPpZIlTdm\nUPqBB6xOKUVZyDjY/zF8NhwGbAebi92GLvdEb7KTTpASsQDnShWpMGiQ3cYWEfvSiiURERERkcLE\nNOH7BbCkE7iXgdAtUKs953btIrpbN3LPpuG/ZLFKJXE8Vw94YAac+CVvjy87qzByJKUffJDkWbM5\nuWaN3ccXEftQsSQiIiIiUlhkZ8L6YXmveq/RCvp9CRVqcnLNGmL7heJSqSIBq1dT8s47rU4qxUWt\n9lCnE3w1FVKP2HVowzDwefklSjVvTuKkyZzdstWu44uIfahYEhEREREpDM4m5q1S+mEJ3DMKuq/E\nLOHJ8WnTSXxhIqWaNaPa8uWU8K1qdVIpbtpPAyeXvMLTzvshGS4u+M58G7c77uDoyJGc/7//s+v4\nInLrVCyJiIiIiBR08XsgPAQSf4bHF0PrieRmZBI/dBipixZRtkcP/Oa/g83T0+qkUhx5VYHWL8Dh\nL2Hfh3Yf3qlUKfzenY9zpYrEhw0k848/7D6HiNw8FUsiIiIiIgXZ3uXwXvu8jZGf/gLqPkzW8eNE\n9+pF2tatVHr+eSpPfAHDWe/lEQs17gdV7oTN4yD9pN2Hd/b2xn/BAnB2JrZfP7KOn7D7HCJyc1Qs\niYiIiIgURDlZsGkMfDwQ/JtC/6+gciDp+/cT/XgXsmJi8XtnHuV697I6qQg42aDTTDifDJFTHDJF\nCT8//MLfJffUaeJCQ8k5c8Yh84jIjVGxJCIiIiJS0JxLgfcfhu/mQ7NB0GsdlCzH2chIYnr1Bmcb\n1ZYvx6NFC6uTivyXT4O8/173vAex3zlkCve6dak6exaZR44QP3gIuZmZDplHRK6fiiURERERkYIk\n8WeICIG43fDQfGj3GqaTjZQFC4h/ZiiuNW+n+qpVuNWqaXVSkSuFjAMvX/hseN6qOwfwuPtuqrz6\nKue//56E58Zg5uQ4ZB4RuT4qlkRERERECop9H8KC+yEnG/pugqDumBcucGzCBE7MeAOv9u2otmQJ\nzhUqWJ1U5OpcPeCBGXDiF9g5x2HTlO7UkYpjxnD28885/uprmHZ+G52IXD/t8CciIiIiYrXcHNjy\nEnzzFvg1gy5LwbMSOadOET9sOOe/+47ygwZSfsgQDCf93bAUcLXaQ51OsG0q3PEQlKvukGm8n+pD\n9okTpL73Hs6VKlG+f6hD5hGRf6bflURERERErJR+CpZ3zSuVGvWBJ9eDZyUuREcT3a076T/8QJVp\nU6kwdKhKJSk82k8DJ2fYMAocuJqo4rOj8erYkaQ33+TUR+scNo+I/D39ziQiIiIiYpWkQxDRCv7Y\nCh3fynurlnMJzu3eTXTXbuScPo3/4vco3bmz1UlFboxXFWg1AQ5/Cfs/ctg0hpMTVV59hVL/votj\nL7xA2vbtDptLRK5OxZKIiIiIiBUOboSI1pB5Bp78DIL7AnDqw4+IfbofNm9vAlavomSjRhYHFblJ\nTULBJwg2jc1bmecgRokSVJ01C9daNYkfNpz0n35y2FwiciUVSyIiIiIi+Sk3F76aBiu7g3cN6L8N\nqt2FmZvLiTfe4Njzz1OqcTABK1dQws/P6rQiN8/JlrcK73wyfDnFoVPZPDzwf/ddnL29iRsQxoXo\naIfOJyL/pWJJRERERCS/ZJ6FNU/A1legfjfouxlK+5Kbns7RYcNJiVhAma5d8Xv3XWxeXlanFbl1\nVYKg6UCIWgRxux06lXOFCvgviAAgtl8o2UlJDp1PRPKoWBIRERERyQ+pf8CC++HgBmj7Kjw8H1zc\nyTp+gphevTkbGUmlcWOpPHkShouL1WlF7KflePDyhfXDICfLoVOVCAjAL/xdslNSiB0wgJy0NIfO\nJyIqlkREREREHO/wFghvCWmJ0OsjuGswGAYZBw4Q3bUrmUeO4DtvLuWefBLDMKxOK2Jfrh7QYTqc\n+AV2znH4dO6BgfjOmknmr78R/8wzmBcuOHxOkeJMxZKIiIiIiKOYJnw7Cz54FLyqQuhWqNESgLNb\nthDdsxcAAcuX4dmypZVJRRyrdgeo3RG2TYXUIw6fzuOee/B5+SXO79xFwrjxmLm5Dp9TpLhSsSQi\nIiIi4ghZ6fBRf/jPC1CnEzz9BZSrjmmapCx6j/jBQ3D9178IWL0Kt9q1rU4r4njtp+Vt6L1hVF7p\n6mBlHnqICqNGcmbDBk5Mm+7w+USKK2erA4iIiIiIFDmn4mBVTzj2E7SaAPeMBsPAzMoi8aWXObV6\nNZ5t2lBl6us4ubtbnVYkf5SuCq1egM1jYP9HUO9Rh0/p3a8f2SeSSF28GOeKFfHu+5TD5xQpblQs\niYiIiIjYU/S3sPoJyLkA3VdCrXYA5Jw+Tfzw4ZzfuQvvAQOoMGwohpMeIJBipkko/LgCNo2FGq3B\nvYxDpzMMg0rjxpKdnMSJadNwrlCe0p06OXROkeJGv5OJiIiIiNiDacLuCFjaGdzLQr8vL5VKF2Jj\nie7eg/NRe/B57TUqjhiuUkmKJycbdJoJ55Phyyn5MqXh5ESVqVMp2aQJCePGk/bNt/kyr0hxod/N\nRERERERuVXYmrB8KG0fnrcII/RIq1ATgfFQU0V26kpOSQrVFCynz8EMWhxWxWJUgaDoQohZB3O58\nmdKpRAl8587BtUYNjg4dSvq+/fkyr0hxoGJJRERERORWnE2ExR3hh6V5eyl1XwFupQE49fHHxD7V\nF1uZMgSsXkXJxo0tDitSQLQcD16+sH4Y5GTly5Q2T0/8wsOxlSlD3IABXIiNzZd5RYo6hxdLhmG0\nMwzjkGEYvxuGMfYq50cahvGLYRg/GYbxpWEY1S47l2MYxt6L/3zq6KwiIiIiIjckPgrCQ+D4Pnh8\nCbR+AZxsmLm5nHj7bY6NHYd7o0YErFpJiWrVrjmcSLHh6gEdpsOJX2DnnHyb1qVSRfwWREB2NrH9\nQslOScm3uUWKKocWS4Zh2IC5QHvgDqC7YRh3/M9l/wcEm6ZZH1gLTLvsXLppmkEX/+nsyKwiIiIi\nIjfk/5bBe+3BVgKe/g/UzXvELTcjg6MjR5Ey/13KPP4Y/hHh2EqXtjisSAFUuwPU7gjbpkLqkXyb\n1vVf/8J3/jtknzhB3IAwcs+dy7e5RYoiR69YagL8bprmH6ZpXgBWAg9efoFpmltN0zx/8eMuwNfB\nmUREREREbl5OFmwaA58MAv+7oP82qFwPgOykJGKeeJKzn39Oxeeeo/KLL2K4uFgaV6RAaz8tb0Pv\nDaPyNsDPJyXvvJOqb71JxoEDxA8bjpmVP4/jiRRFji6WqgJxl32Ov3js7zwNbLrss5thGFGGYewy\nDOOquxwahtH/4jVRSUlJt55YREREROTvnEuB9x+G7+ZDs8HQ6yMoWQ6AjEOHONK1K5m//YbvnNl4\n930KwzAsDixSwJWuCq1egMNfwv6P8nVqz5Yt8ZkymXPffMOxCRMw87HYEilKnK0O8CfDMHoBwUCL\nyw5XM03zqGEY/wK2GIbxs2mahy+/zzTNcCAcIDg4WL8SiIiIiIhjHPsJVvaEtOPw0HwI6n7pVNpX\nX3F0xEicPD0JWPYBbnf87+4PIvK3moTCjytg09i8tyq6l8m3qcs89hjZSUkkzZyFc8WKVBw1Kt/m\nFikqHL1i6Sjgd9ln34vH/sIwjPuA54HOpmlm/nncNM2jF//9B7ANuNORYUVERERErmrfh7CwDZg5\n0HfzpVLJNE1Sl75P3MBBlAgIIGD1KpVKIjfKyQadZsL5ZPhySr5P7x0WRpnu3UiJWEDq0qX5Pr9I\nYefoYul74HbDMKobhlEC6Ab85e1uhmHcCbxLXql04rLjZQ3DcL344/LA3cAvDs4rIiIiIvJfuTnw\nn0mwti/4NMjbT6lqQwDM7GwSX3yR46++ikerllT74H1cKlWyNK5IoVUlCJoOhKhFELc7X6c2DIPK\nEybgef/9HH/tdc5s3Jiv84sUdg4tlkzTzAaGAJ8DB4DVpmnuNwzjRcMw/nzL23TAA1hjGMZewzD+\nLJ7qAFGGYfwIbAVeN01TxZKIiIiI5I/0U7C8K3z7NjR6Cp5cDx4VAcg5e5a4AWGcWrES735P4ztr\nFk4lS1ocWKSQazkevHxh/bC8TfLzkWGzUWXGdNwbNSRhzFjO7dqVr/OLFGZGUdqgLDg42IyKirI6\nhoiIiIgUdicOwsoecCoWOkyD4L6XTl2IjycuLIwL0TH4TJ5EmcceszCoSBFzcCOs7A73TYbmI/J9\n+pzTp4np1YushGNU++B93OrUyfcMIgWRYRh7TNMMvto5Rz8KJyIiIiJSuBzcAAvug8yzeauULiuV\nzv/wf0R36Up2UjL+CxeqVBKxt9odoHZH2DYVTkbn+/S20qXxi4jAydOT2P79uRB/xRbBIvI/VCyJ\niIiIiADk5ub9YXZlDyh/W95+StXuunT69PrPiO3TBydPDwJWrqBU0yaWRRUp0tpPy9vQe8MosOAJ\nG5fKlfFfEIF5IYu4fv3IPnky3zOIFCYqlkREREREMs/C6t6w7VWo3w2e2gSlqwJ5b35Lmj2HhGef\nxb1BAwJWrsS1enWLA4sUYaWrQqsX4PdI2L/Okgiut92G37y5ZB07RlxYGLnnz1uSQ6QwULEkIiIi\nIsVbymFYcD8c2gRtX4OH54OLOwC5mZkkjBpN8ty5lH74YfwXLsC5bFmLA4sUA01CwScINo/N20jf\nAiUbNaLqGzPI+Hkf8SNGYGbl74biIoWFiiURERERKb5+/xIiWkJaIvT+CO4aBIYBQHZyMrFPPMmZ\njRupMGokPq++glGihMWBRYoJJxt0mgnnkuDLFy2L4XnffVSe+ALnvtrOsUmTKUovvxKxF2erA4iI\niIiI5DvThB2zIXISVKgD3ZZBuf8+3pbx66/Ehw0kOzWVqrNm4tWmjYVhRYqpKkHQNAx2vQMNuoGf\nNfuale3WjewTSSTPm4dzxQpUHD7ckhwiBZVWLImIiIhI8XLhPHwUCv95Aep0hn7/+UuplPb118R0\n74GZlUW1999XqSRipZbjwasKrB8OOdY9ilb+mSGUefwxUua/S+ry5ZblECmIVCyJiIiISPFxKg4W\ntYWf1+ZtDvz4YihR6tLp1GXLiBsQhou/PwFrVuMeWM+6rCICrp7QYTqc2A8751oWwzAMKk+ahEfL\nlhx/6WXOfPGFZVlEChoVSyIiIiJSPER/C+EhcDIaeqyCe0df2k/JzM4m8eVXOP7Sy3i0aEHAB+/j\nUrmypXFF5KLaD0DtjrDt9bz/fy1iODtT9c03cG/QgITRz3L+++8tyyJSkKhYEhEREZGizTRhdwQs\n7QzuZSF0C9Rse+l0TloacYMGcfKDDyjXpw++c2bjVKrUPwwoIvmu/dS8Db03jMr7f9oiTu7u+L4z\nDxdfX+IGDSbj0K+WZREpKFQsiYiIiEjRlZ0J64fCxtFw230Q+iWUv/3S6ayjR4np3oNzO3ZSecoU\nKo0dg2GzWRhYRK6qtC+0mgC/R8L+dZZGcS5bFv+IcJzc3Ynr35+shARL84hYTcWSiIiIiBRNZxNh\ncUf44f/Zu+/oqqq8D+PPSYeEhIQS0oMFFUcUQZQZdSgWimClCypCqAJKUYqggNIsoAgkQVQQCIgV\nBRtgnQEEGUWwMRJSSKEkkIT0e94/wviKgBDIzb5Jvp+17iLJ3ffkmbUccvnlnH2Wwg1joOdK8An4\n/en8//yHvd17UJyeTmR8HIE9uhuMFZEzahUDIVfBh49BfrbRFM+wMCLi43EcO0bSwBhKs832iJik\nwZKIiIiIVD8p28r2U8rYBd1eg/aPg9v/v/U9um4d+/rdh1vt2kSvSsC3dWtzrSJydtzcoctcyDsA\nG6aarsHnkiaEvzSf4qQkkocMxVFQYDpJxAgNlkRERESketmxHF7pCO5eMOATuPyO35+ybZsDCxaQ\n+shofK64gujVq/C+4AKDsSJSLqHN4drBsG0JJG81XYNvq1aEzplD/n/+Q+ojo7FLSkwniVQ6DZZE\nREREpHooLYb1j8K7QyGyNcR8BsGX//60o6iI/Y8+ysEXXiTg9q5EvrIEj8BAY7kico7aTgD/UFg7\nquz/94b5d7iV4IkTyd24kfSp07ANbi4uYoIGSyIiIiJS9eUdgmV3wpZF0Ho43PsW1A76/emSw4dJ\nuv8Bjr63lgajRhIycyZuXl4Gg0XknHnXgU5zIHMX/Psl0zUABN3bh3oxMWSvXs3BlxaYzhGpVB6m\nA0REREREzkva95DQB3Iz4M5YuLLnCU8X7tlD8uAhlBw4QNjc5/Hv0MFQqIhUmEs7w6W3wWczyy53\nDYw2XUSDh0dRkpnJwfnz8WjQQDcEkBpDZyyJiIiISNX1w5vw8i1gl0L/D08aKuV+/TWJvXrjKCgg\natlSDZVEqpOOs8o29P5gNLjA5WeWZREybSq+N95A+pNPkrNhg+kkkUqhwZKIiIiIVD2OUvhkCqzp\nDyFXlu2nFHb1CUuyEhJIjhmEZ0gIjVevolazZkZSRcRJAsKh3STY8ynsett0DQCWpyfhc+fic/nl\npD4ymmPffms6ScTpNFgSERERkaolPxtW9ICv50KLB+C+teDX8Pen7dJSMmbMIP2JJ/G7/nqiVqzA\nMzTUYLCIOE2rGAi5Cj58rOzvBhfgVrs2EbGL8GzUiOQhQyn8739NJ4k4lQZLIiIiIlJ1ZP4E8e3g\nt8/gtuehy1zw+P9NuEtz80gZNpzDry0lsF9fwhe8hLufr7leEXEuN/eyvwfyDsCGqaZrfucRFETE\ny4uxvDxJGjCQ4owM00kiTqPBkoiIiIhUDT99AItvgsKcsrOUWvY/4enitDT29elD7pdf0mjKZBpN\nmIDl7m4oVkQqTWhzuHYwbFsCyVtN1/zOKzycyNhYHEePkjxgIKVHj5pOEnEKDZZERERExLU5HPDZ\nLEjoDfUvKttPKar1CUvyd+5kb/fuFKemErFoEYG9ehlJFRFD2k4A/1BYOwpKi03X/M6naVPC579I\nYWIiKUOH4SgsNJ0kUuE0WBIRERER11WYA6v7wmdPQ7Oe8MB6CAg7YcnRDz9iX99+uHn7EJ2wEr8b\nrjcUKyLGeNeBTnMgcxf8+yXTNSfwbd2a0JkzOLZtG/vHjsMuLTWdJFKhNFgSEREREdd06L+w+Gb4\neT3cOgPuXASetX5/2rZtDsbGkTpqFD6XXUb06lV4X3SRwWARMerSznDpbfDZTMhKNF1zgoDOnQke\n/xg5H39MxlNPY9u26SSRCqPBkoiIiIi4nj0bIL4t5KZD37eg9VCwrN+fdhQVkTZ+Ageefx7/224j\n8tVX8AgKMhgsIi6h46yyDb0/GA0uNrwJuu8+gh7sT9aKFRyKjTOdI1JhNFgSEREREddh2/D1C7D8\nHvAPh4Gb4II2JywpycoiqX9/jrzzDvUfGk7onNm4eXsbyRURFxMQDu0mwZ5PYdfbpmtO0nD0aPy7\nduHA3Llkv/mW6RyRCuFhOkBEREREBICiY7B2BOx8A5reAXcsAC/fE5YU/raX5MGDKUlPJ/TZZwjo\n3NlQrIi4rFYx8F0CfPgYXNgOatU1XfQ7y82N0OnTKT10mLTJk3GvF0SdNm1MZ4mcF52xJCIiIiLm\nZSfDklth5xpo9zh0UhQaAgAAIABJREFUe/WkoVLe5s0k9uyJIy+PyNde1VBJRE7NzR26zIW8A7Bx\nmumak1heXoTNm4fPJZeQOuph8r/7znSSyHnRYElEREREzEr8GuLalG2223sV3DjmhP2UALLeeIOk\nAQPxDG5I9KpV1G7e3EiqiFQRoc3h2sHwzcuQ/I3pmpO4+/kSEReLR4MGJA8aTOFve00niZwzDZZE\nRERExAzbhq3xsLQr1AqEgRuhya0nLiktJWP2HNIfn4xv69ZErVyJV3iYoWARqVLaTgD/UHh/FJQW\nm645iUf9+kQujgc3N5IHDKA4I9N0ksg50WBJRERERCpfSSG89xCsGwMX3QQDN0D9i09Y4sjLI2XE\nSA4vWUJgnz5ELFyAu5+foWARqXK860CnOZDxA2xeYLrmlLyiooiIjaUkO5vkQYMozckxnSRSbhos\niYiIiEjlykmHV2+DHcvghjHQcyX4BJywpDg9ncR7+5K7aRPBEyfS6PFJWB6674yIlNOlneGSzrBp\nBmTtM11zSrWu+Bvh8+ZRuGcPKQ+NwFFUZDpJpFw0WBIRERGRypOyDWL/CRm7oNtr0P5xcDvxLWn+\nD7tI7N6D4qQkIhYuIKjvvYZiRaRa6DQbLLeyMyRt23TNKfndcD2hT03n2ObNpD32GLbDYTpJ5Kxp\nsCQiIiIilWPH6/BKR/DwhgGfwOV3nLTk6CefsK9vXywPD6JWrMDvn/80ECoi1UpAOLSbBL9+DLvf\nMV1zWgG3307DsWM4um49GTNnYrvoEEzkzzRYEhERERHnKi2GdePg3WEQ2RpiPoPgy09YYts2hxYv\nJnXESLybXEz06lX4XNLESK6IVEOtYiDkSlj/KBQcMV1zWkH9+xN0Xz+yli7j8JIlpnNEzooGSyIi\nIiLiPHkHYdmdsDUWWg+He9+C2kEnLLGLikibNInMZ57Fv2MHol57DY/69Q0Fi0i15O4BXeZB3gHY\nMNV0zWlZlkXDRx/Fv1NHMuc8w5F33zWdJHJG2gFRRERERJwj7XtI6AO5GXBnLFzZ86QlpdnZpIwY\nybGtW6k/dAj1hw/HctPvPkXECUKbQ6tBsGURNOsJEdeYLjoly82NkJkzKTmcxf6Jk3APqoffDdeb\nzhI5Lf3UFhEREZGKt3MNvHwL2KXQ/8NTDpWKEhNJ7NGT/B07CJ09iwYjRmioJCLO1W4i1AmB90eV\nXabroty8vAif/yLeF11EysiR5O/8wXSSyGnpJ7eIiIiIVBxHKXwyGd58EEKvKttPKezqk5blbdnK\n3h49KT16lMjXXiWga9dKTxWRGsi7DnSaAxk/wOYFpmv+krufHxFxsXgEBpI8aBBF+/aZThI5JQ2W\nRERERKRi5GfBiu7w9Txo2R/6vQd+DU9alv3mWyQNGIBH/fpEr15F7atPHjyJiDjNZbfBJZ1h0wzI\ncu1hjWfDhkTEx4PDQdKAgZQcPGg6SeQkGiyJiIiIyPnL/Ani28Fvn8Ntc+G258HD64QltsNB5rPP\nkjZxIr7XXEP0yhV4RUQYChaRGq3TbLDcYN0YsG3TNX/J+4LGRMQuouTgQZJjBlGam2c6SeQEGiyJ\niIiIyPn56QNY3B4Kc+H+96HlAyctceTnkzpyFIfiF1O3Zw8iYhfh7u9vIFZEBAgIh3aT4NePYfc7\npmvOqNaVVxL2/HMU/PwzqSNGYBcVmU4S+Z0GSyIiIiJybhwO+GwmJPSG+k3K9lOKvO6kZcUZmey7\nty85n35K8PjHaDRlCpanZ6XnioicoFUMhFwJ6x+FgiOma86oTps2hEydSt6//sX+iZOwHQ7TSSKA\nBksiIiIici4Kc2B1X/hsBlzZCx5YDwFhJy0r2L2bxO7dKdy7l/AFLxF0331YlmUgWETkT9w9oMs8\nyDsAG6aarjkrde++iwajRnF07Voyn3nWdI4IAB6mA0RERESkijn037KzlA7+Ch1mwrWD4RTDopyN\nG0kdMxb3gACiVyzH59JLDcSKiPyF0ObQahBsWQTNekLENaaLzqjeoBhKMjM5vGQJHg0bUO/++00n\nSQ2nM5ZERERE5Ozt+RTi20JuBvR9C64bctJQybZtDi15hZRhw/G+8EKiVyVoqCQirqvdRKgTAu+P\ngtJi0zVnZFkWwRMnUOeWW8icOYsjH3xgOklqOA2WREREROTMbBu+ngfLu0FARNl+She0OXlZcTHp\nU54gc/Zs6txyC1FLX8OzYcNKjhURKQfvOtBpDmT8AJsXmK45K5a7O6FzZlO7ZUv2PzaevH//23SS\n1GAaLImIiIjIXys6Bm8OgE8mw2Vd4cGPITD6pGWlR46QFBND9urV1Bs0iLDnn8OtVq3K7xURKa/L\nboNLOsOmGZC1z3TNWXHz9iZ8wUt4R0eTMvwhCnbvNp0kNZQGSyIiIiJyetlJsORW+OFNaD8Zur0K\nXr4nLStKSiKxV2+ObdtOyIwZNHx4FJab3mqKSBXSaTZYbrBuTNlZmlWAu78/EYvjcfP3JylmEEUp\nKaaTpAbST3sRERERObXEryCuDWQlQu9VcMPoU27SfWzbNhK796D00CGilrxM3TvvqPRUEZHzFhAO\n7SbBrx/D7ndM15w1z+BgIhfHYxcXk/zgAEoOHzadJDWMBksiIiIiciLbhq3xsPR2qF0PBm6EJree\ncmn2O++w74H+uAcGEr16FbWvcf07KomInFarGAi5EtY/CgVHTNecNe8LLyRi4UKK09NJHjQYR16e\n6SSpQTRYEhEREZH/V1II7w0vuxTkopthwKdQ/+KTltkOB5lz55L22Hhqt2hBdMJKvKKiDASLiFQg\ndw/oMg/yDsCGqaZryqX21c0Je+5ZCnbtIuXhh7GLXf8Od1I9aLAkIiIiImWOpsGrnWHH63DjWOi5\nAnwCTlrmKCgg9ZHRHFoUS91u3YiMj8M94OR1IiJVUmhzaDUIvnkZkr8xXVMuddq3p9GUKeR98SVp\nj0/GriJ7RUnV5mE6QERERERcQPI3sOpeKMyB7kuh6e2nXFZy4ADJw4ZTsHMnDceNI+iB+7FOse+S\niEiV1m4i7H4X3h8FMZ+Bu6fporMW2KM7JQcOcHD+fDwaNqThIw+bTpJqTmcsiYiIiNR0O16HVzuB\npw8M+OS0Q6WCn39mb/ceFP76K+HzX6Re/wc0VBKR6sm7DnSaAxk/wOaFpmvKrf6wodTt3p1DcXEc\nXva66Ryp5jRYEhEREampSoth3Th4dxhE/R0GboLgy0+5NOezz9jXqzc4HEQvf5067dtXcqyISCW7\n7Da4pDN8NgOy9pmuKRfLsmg0+XH82rcn4+mnOfrhh6aTpBrTYElERESkJso7CMvuhK2x0Ho49HkT\nagedtMy2bQ4vXUrK0GF4RUcTvXoVPk2bGggWETGg02zAKruhQRXbr8jy8CDs2WeoddVV7B87jrwt\nW00nSTWlwZKIiIhITZP2PcS1hZRv4M44uPWpsjsh/YldUkL61KlkPD2DOu3bEfX6MjyDgw0Ei4gY\nEhAO7SbBrx+X7blUxbj5+BCxcAGekZGkDBtGwc8/m06SakiDJREREZGaZOcaePkWsEuh/4dwZY9T\nLivNySF50GCyVyZQb+AAwubNw6127UqOFRFxAa1ioFEzWP8oFBwxXVNu7nXrEhkfh5uvL8kDYyhO\nTTWdJNWMBksiIiIiNYGjFD6ZDG8+CKFXld3lKLT5KZcWJSeT2KsXeVu2EPLUdBqOHo3lpreNIlJD\nuXtAl3mQlwkbppmuOSeeoaFExMfhyM8naWAMJVlZppOkGtE7BBEREZHqLj8LVnSHr+dByweh33vg\n1/CUS499+y2J3XtQcuAgkS+/TN27767kWBERFxR2ddmZS98shpRtpmvOiU+TJkQseInilBRShgzF\nkZ9vOkmqCQ2WRERERKqzzJ8gvh389nnZb9xvew48vE659MjatSTddz9u/nWITliJ77WtKjlWRMSF\ntZ0IdUJg7ciyu2pWQbWvuYbQZ+aQ/913pD4yGrukxHSSVAMaLImIiIhUVz99AIvbQ2Eu3P8+tLj/\nlMts2+bACy+yf+w4al11FdEJCXg3bly5rSIirs7Hv+wucRk/wOaFpmvOmf8tt9Bo8uPkbtpE+pNP\nYlexu92J6zn59h8iIiIiUrU5HPDFbPhsBoReDT2Xg3/oqZcWFpI2fgJH160j4K67CHliCpbXqc9o\nEhGp8S69DS7pVPb3a9PbITDKdNE5CezVi+KMDA4tisWjQUMajHjIdJJUYTpjSURERKQ6KcyB1X3L\n/tFzZW94YP1ph0olBw+S1O8+jq5bR4PRjxDy1HQNlURE/oplQcfZgAXrxkAVPtunwciRBNx9FwcX\nLCArIcF0jlRhOmNJREREpLo49F9I6A0Hf4UOM+HawWX/CDqFgl9+IWXwEEoOHybshXn433JLJceK\niFRRdSOg3UT4aALsfhcuv8N00TmxLIuQJ5+k9OAh0qdOw71ePfxvvtl0llRBOmNJREREpDrY8ynE\nt4XcTOj7Nlw35LRDpdwvv2Rfr97YxcVELVumoZKISHm1GgSNmsH6R6HgiOmac2Z5eBD2/HP4XPE3\n9o8ew7Ht200nSRWkwZKIiIhIVWbb8PU8WN4NAiIgZhNc8M/TLj/8+nKSBw3GMzKS6DdWU+uKv1Vi\nrIhINeHuUXanzbxM2DDNdM15catdm4hFi/AMDSV5yFAKf/3VdJJUMRosiYiIiFRVRcfgzQHwyeSy\nTWQf/BgCo0+51C4pIX3adDKmT8evTRuiX1+GZ6NGldsrIlKdhF0NrWLgm8WQss10zXnxCAwkYvFi\nLG8vkgbGUJyWZjpJqhANlkRERESqouwkWHIr/PAmtJ8C97wCXr6nXFqam0vy0KFkLV9O0AMPEP7i\nC7j5nnqtiIiUQ9uJUCcE1o6E0mLTNefFKzyMyPh4HLm5JMfEUHqk6l7iJ5VLgyURERGRqibxK4hr\nA1n7oPdquOGR0+6nVJyayr5evcn7179pNPVJgh8dh+XuXrm9IiLVlY8/dJoNGT/A5oWma86bz6WX\nEj5/PkWJ+0geNgxHQYHpJKkCNFgSERERqSpsG7bGw9LboXY9GLgRmpx+4+38//yHvd17UJyeTmR8\nHIHdu1dirIhIDXHpbXBJJ/hsRtnAv4rzve5aQmfPIn/7t+wfOxa7tNR0krg4DZZEREREqoKSQnhv\nOKwbAxfdDAM2QP2LTrv8yAcfsK/ffbjVrk30qgR8W7euxFgRkRrEsqDjbMAq+zvatk0XnTf/jh0J\nHj+enE8+JX3aNOxq8L9JnEeDJRERERFXdzQNXu0MO16HG8dBzxVll1+cgm3bHHjpJfaPHoNPsyuI\nXr0K7wsuqORgEZEapm4EtJsIv34Mu981XVMhgvr1pd7AAWQnrOLQokWmc8SFeZgOEBEREZG/kPwN\nrLoXCnOg+zJo2vW0Sx2FhaRNepyja9cScPvtNJo2FTcvr0qMFRGpwVoNgu8SYP2jcGFb8AkwXXTe\nGjzyCCWZBzgw7wXc69cnsFs300nignTGkoiIiIir+nYZvNoJPH1gwKd/OVQqOXyYpAf6c3TtWhqM\nGkXIzBkaKomIVCZ3D+gyD/IyYcM00zUVwrIsQqZPw/f660mf8gQ5GzeZThIXpMGSiIiIiKspLYZ1\nY8v2VIr6BwzcBMFNT7u8cM8eErv3oGDXLsLmPk/9wYOwTnOXOBERcaKwq6FVDHyzGFK2ma6pEJan\nJ+Hz5uLTtCmpjzzCsR07TCeJi9FgSURERMSV5B2EpXfA1jhoPRz6rIHaQaddnvv11yT26o2joICo\nZUvx79ChEmNFROQkbSdCnRBYO7LsFwXVgJuvLxGxi/Bo2JCUwUMo/O0300niQjRYEhEREXEVad9B\nXBtI3QZ3xcOtT5VdWnEaWQkJJMcMwjMkhMarV1GrWbPKaxURkVPz8YdOsyHjB9i80HRNhfGoV4/I\nxfHg4UHSgAEUZ2SaThIXocGSiIiIiCvYuQZevrXsNtX9P4Rm3U+71C4tJWPGDNKfeBK/668nasUK\nPENDKzFWRET+0qW3wSWd4LMZkLXPdE2F8YqMJCI2Fkf2EZIHDqT06FHTSeICNFgSERERMclRCp9M\nhjcfhNDmEPNZ2Z+nUZqbR8qw4Rx+bSlB9/UjfMFLuPv5VlquiIicBcuCjrMBq2zPPNs2XVRhav3t\ncsJefIHC334jZdhwHIWFppPEMA2WREREREzJz4Ll3eDreXDNAOj3Lvg1OO3y4rQ09vXpQ+6XX9Lo\niSkEjx+P5e5eicEiInLW6kZAu4nw60fw43umayqU3z/+QeiMpzn2zTfsf/QxbIfDdJIYdPqL9kVE\nRETEeTJ/hITekJ0MXV6AFvf95fL8nTtJHjoUO7+AiNhY/K7/RyWFiojIOWs1CL5LgHXj4II24BNg\nuqjCBHTpQsmBg2TOnk1G/foET5ygO5LWUDpjSURERKSyJX4Fi2+Cojy4/4MzDpWOfvgR++7ti5u3\nD9EJKzVUEhGpKtw9oMs8yMuEjdNN11S4ev0fIOj++8l6/XUOLV5sOkcM0WBJREREpDId3AMJfcA/\nrGw/pchrT7vUtm0OLoolddQofJo2JXr1KrwvuqjSUkVEpAKEXQ3XDISt8ZCy3XRNhWs4biz+nTtz\n4NnnyH77HdM5YoAGSyIiIiKV5dhhWNEd3Nyhz2rwP/2d3BxFRaSNn8CBuXPx79KFyFdfwSMoqBJj\nRUSkwrSbBHUawdqRUFpiuqZCWW5uhM54Gt+/tyZt0iRyv/jCdJJUMg2WRERERCpDSRGs7gdHkqHn\nCgiMPv3SrCyS+vfnyDvvUH/EQ4TOnoWbt3fltYqISMXy8S+7S1zGTtiy0HRNhbO8vAh74QW8L2lC\nyshR5H//vekkqUQaLImIiIg4m23DB49A4pfQdT5EXnfapYW/7SWxR08Kvt9J6LPP0GDoUG2GKiJS\nHVzWBZp0hE1PQ3aS6ZoK5+7nR2RsLB716pE8aDBFiYmmk6SSaLAkIiIi4mz/ng87lsGNY+HKHqdd\nlrd5M4k9e+LIyyNq6WsEdO5ciZEiIuJUlgWd5gAWfDCm7JcO1YxHgwZExMcBkDRgICUHDhguksqg\nwZKIiIiIM/20Dj5+HJreAW0mnHZZ1htvkDRgIJ7BDYletYpaV11ViZEiIlIp6kZA2wnw60fw43um\na5zCu3FjImIXUXLoEEmDBlGam2s6SZxMgyURERERZ0n7Ht4cAKHN4Y6F4HbyWy+7tJSMWbNJf3wy\nvq1bE7VyJV7hYQZiRUSkUlw7GBpdAevGQcER0zVOUatZM8LnzaXw519Ieegh7KIi00niRE4fLFmW\n1cGyrJ8ty9pjWdZjp3j+EcuydluW9b1lWRssy4r6w3P3WZb16/HHfc5uFREREakwOemwsifUqgu9\nVoJX7ZOWOPLySHloBIdfeYXAPn2IWLgAdz8/A7EiIlJp3D2gyzzIzYCN003XOI3fjTcSMn06x/69\nmf3jJ2A7HKaTxEk8nHlwy7LcgZeAm4EU4BvLst6zbXv3H5btAFratn3MsqwhwGygh2VZQcAUoCVg\nA9uPvzbLmc0iIiIi563oGKzsBfnZ0P/DsltM/0lxejrJQ4ZS+PPPBE+aRNC9fQyEioiIEWEtoFUM\nbI2DZj0hvIXpIqeoe+cdlBw4wIHnnsOjQQOCH3vUdJI4gbPPWGoF7LFt+zfbtouABOD2Py6wbXuT\nbdvHjn+6GQg//vGtwCe2bR8+Pkz6BOjg5F4RERGR8+NwwDuDYf8OuHsxhDQ7aUn+zh9I7N6D4qQk\nIhYt1FBJRKQmajep7BcPa0dCaYnpGqepN3AAgffey+FXX+XQkldM54gTOHuwFAYk/+HzlONfO50H\ngfXn+FoRERER8z57Gna/C7dMg0s7nfR09jvvsK9PHywPD6JWrsDvxhsNRIqIiHE+/tBxNmTshC0L\nTdc4jWVZBI9/jDodOpA5ezZH1q41nSQVzGU277Ys617KLnubU87XxViWtc2yrG0HdCtDERERMem7\nVfDFHLi6H7QefsJTdnEx6U8/Tdpj46nVvDnRb67Bp0kTQ6EiIuISLusCTTrCpqchO8l0jdNY7u6E\nzppJ7Vat2D9hIrlff206SSqQswdLqUDEHz4PP/61E1iWdRMwEehq23ZheV5r23acbdstbdtu2aBB\ngwoLFxERESmXpM3w3nCIvgE6PQuW9ftTJYcPkzRgIFlLlxF0Xz8iX16MR2CgwVgREXEJlgWd5gAW\nfDAGbNt0kdO4eXsT/tJ8vC+4gNSHRpC/a5fpJKkgzh4sfQNcbFlWY8uyvICewHt/XGBZVnMglrKh\nUuYfnvoIuMWyrEDLsgKBW45/TURERMS1HN4LCb0hIAK6LwUPr9+fKti9m8R7upG/Ywehs2YSPH48\nlodT758iIiJVSd0IaDsBfv0IfnzvzOurMPc6dYiIi8OtbgDJMYMoSqq+Z2nVJE4dLNm2XQIMp2wg\n9COw2rbtXZZlTbUsq+vxZXMAP+ANy7L+Y1nWe8dfexiYRtlw6htg6vGviYiIiLiOgiOwsic4SqH3\naqgd9PtTR97/gMTefbAdDqKWLyfg9tv/4kAiIlJjXTsYGl0B68aV/VypxjyDGxK5eDGUlJA0cCAl\nhw6ZTpLzZNnV6FS7li1b2tu2bTOdISIiIjVFaQms6A57P4d734IL/gmAXVpK5nPPcfjlJdRq2YLw\nuXPxqF/fcKyIiLi01O0Q3x5aDTx+eVz1dmzHDpIe6I/3RRcR9dqruPn6mk6Sv2BZ1nbbtlue6jmX\n2bxbREREpMr5aDz8dwN0fu73oVJpdjbJA2M4/PISAnv3JmrJEg2VRETkzMJaQKsY2BoPKdtN1zhd\n7ebNCXvuOQp27yZl5Cjs4mLTSXKONFgSERERORdb4mBrXNnd31rcB0DBz7+wt1t3jn3zDSHTp9Fo\n8uNYXl5nOJCIiMhx7SZBnUawdmTZWbHVXJ12bWn05BPkffUVaZMmUZ2uqKpJNFgSERERKa9fP4UP\nHy27RfTNUwE4+uFHJPbqhV1QQNSypdS95x7DkSIiUuX4+EPH2ZCxE7YsNF1TKQK7daP+iIc48u57\nHHjuOdM5cg40WBIREREpj8wfYc0D0PByuHsxtg2Zz88lddQofJo0IfrNNdS66irTlSIiUlVd1qXs\nFxebnobsmnHXtPpDhlC3Zw8OxS/m8NKlpnOknDRYEhERETlbeQfLNuv2rAW9EygtdJAydBiHYmOp\n2+0eIpe+hmfDhqYrRUSkKrOs45t3W/DBGKgBl4dZlkWjxx/H76b2ZMyYydF160wnSTlosCQiIiJy\nNkoKIaEP5GZCz5UUHiwksVt3cr/+mkZPTKHR1Km4aT8lERGpCHUjoO0E+PUj+PE90zWVwnJ3J+yZ\nZ6h19dXsf/Qx8jZvNp0kZ0mDJREREZEzsW14bwQkb4Y7FpLzczaJ3XtQmpdH1GuvEtizJ5Zlma4U\nEZHq5NrB0OgKWDcOCo6YrqkUbj4+RCx4Ca/oKFKGDafgxx9NJ8lZ0GBJRERE5Ey+fBa+T8D+50QO\nfJZGyrDheDVuTOM1b1C7RQvTdSIiUh25e0CXeZCbARunm66pNO4BAUTExeFWpw5JMTEUpaSaTpIz\n0GBJRERE5K/segc2TqP04rtIWbOPg/PnE3DHHUQtfx3PRo1M14mISHUW1gJaxcDWeEjdbrqm0niG\nhBAZH4ddWETywIGUZGWZTpK/oMGSiIiIyOmkboe3B1PoezWJyzPI/exzgidMIGTG07h5e5uuExGR\nmqDdJKjTCNaOhNIS0zWVxvvii4lYuIDi/ftJHjwYx7FjppPkNDRYEhERETmVIymwshe5h+qRuCqX\n0qxsIpcsIahfX+2nJCIilcfHHzrOhvSdsGWR6ZpKVbtFC8KefYaCnT+Q+vAj2CU1Z7BWlWiwJCIi\nIvJnhbnYK3pwcHsJyR/aeEZG0HjNG/he28p0mYiI1ESXdYEmHWDTU5CdZLqmUtW56SYaTX6c3M8/\nJ23KFGzbNp0kf6LBkoiIiMgfOUpxJPQn9a39HNjhjX+nTkQvX45nWJjpMhERqaksCzrNKft43diy\nu5XWIIE9e1J/6BCOvPkWB154wXSO/IkGSyIiIiJ/UJQwhsQF35KTUouG48YR+swc3GrVMp0lIiI1\nXd1IaDsBfvkQflxruqbS1X/oIQLuuZtDCxdxeMUK0znyBxosiYiIiByX+9qT7J25juKi2kQsjqde\n/we0n5KIiLiOa4dA8BWwfhwUHDVdU6ksyyLkiSfwa9OGjGnTOfrxx6aT5DgNlkRERKTGs22bQ3Me\nJ3nmSjzr1qLx2+/i949/mM4SERE5kbsHdJkHOemwcbrpmkpneXgQ9vxz1GrWjP1jxnLsm29MJwka\nLImIiEgN58jPZ/+IIWS+vIY6F3oS/c56vKIbm84SERE5tfAW0GogbI2D1O2mayqdW61ahC9aiGdY\nGMlDh1Hw8y+mk2o8DZZERESkxipOTSWxV0+OfvI5DVqUEPbau7gFhZjOEhER+WvtJkGdRrB2JJSW\nmK6pdB6BgUQujsfNx4fkmBiK9+83nVSjabAkIiIiNVLe5i3svacbxXv3ENHmCPWfXopV7wLTWSIi\nImfmEwAdZ0H6TtiyyHSNEZ5hYUQsjseRl0fSwBhKs7NNJ9VYGiyJiIhIjWLbNoeXLiPpwQdx9ywi\nun0afkOeg6jWptNERETO3mVdoUkH2PQUZCeZrjHC55JLCH/pJYqTkkgeMhRHQYHppBpJgyURERGp\nMRyFhaSNn0DG00/j1yyS6Bv24N35Ybiyp+k0ERGR8rEs6DSn7ON1Y8G2zfYY4nttK0LnzCb/P/8h\ndfQY7JKad2mgaRosiYiISI1QnJ7Ovnv7cuSdd6jf61bCm/wL9yu7QtuJptNERETOTd1IaDsBfvkQ\nflxrusYY/w4dCJ4wgdwNG0ifOg27hg7ZTNFgSURERKq9Y9u3s/fueyj6738Jnz6WBh6rscKugjsW\ngZveDomISBXsla7fAAAgAElEQVR27RAIvgLWj4OCo6ZrjAnqey/1YmLIXr2agwsWmM6pUfROSkRE\nRKot27bJSkhg33334+7nR/QrL1En6VmoVRd6JYBXbdOJIiIi58fdA7rMg5x02DjddI1RDR4eRcAd\nd3DwxflkrV5tOqfG0GBJREREqiVHURHpk6eQ/sST+P7j70SvWIr3lvGQn1U2VKrTyHSiiIhIxQhv\nAa0GwtY4SN1uusYYy7IImTYV3xtvIP2JJ8nZuNF0Uo2gwZKIiIhUO8WZmST1u4/sN96g3uBBRMyf\nj/uGsbB/B9wdDyHNTCeKiIhUrHaTyn5psnYklNbcDawtT0/Cn38en8svJ/XhRzj27Q7TSdWeBksi\nIiJSreT/5z8k3n0PBb/8QtjcuTQcNQrry9mw+x24eSpc2tl0ooiISMXzCYCOsyB9J2xZZLrGKDdf\nXyJiF+HRKJjkIUMo/O9/TSdVaxosiYiISLWRvWYN+/r2w/L2JnrlSvw73Arfr4YvZkPzvvD3h0wn\nioiIOM9lXaFJB9j0FGQnma4xyiMoiMjFi7E8PUkaMJDijAzTSdWWBksiIiJS5dlFRaRPnUrapMep\nfc01NF7zBj6XNIGkzfDuMIi+ATo/B5ZlOlVERMR5LAs6zSn7eN1YsG2zPYZ5RUQQGReL4+hRkgcM\npPRozb1rnjNpsCQiIiJVWsmhQ+zr35+sFSsJerA/EXGxuNetC1mJkNAHAiKg+1Lw8DKdKiIi4nx1\nI6HtBPjlQ/hxreka43yaNiX8xRcoTEwkZegwHIWFppOqnbMeLFmW5WtZltvxj5tYltXVsixP56WJ\niIiI/LX8H3ax9+57KPhhF6HPPEPw2LFYHh5QcARW9ABHCfReDbWDTKeKiIhUnmuHQPAVsH4cFOgs\nHd+//53QGTM4tm0b+8eOwy4tNZ1UrZTnjKUvAB/LssKAj4G+wKvOiBIRERE5k+x33mFf797gZhG9\nYjkBtx3flLu0BNb0h0N7ys5Uqn+R2VAREZHK5u4BXeZBTjpsnG66xiUE3NaZho89Ss7HH5Px1NPY\nNfwywYpUnsGSZdv2MeAuYIFt292Ay52TJSIiInJqdkkJGTNmkPbYeGo1b07jNWvwadr0/xd8NAH2\nfFq2p9IF/zQXKiIiYlJ4C2g1ELbGQep20zUuod799xPUvz9ZK1ZwKDbOdE61Ua7BkmVZrYE+wAfH\nv+Ze8UkiIiIip1aSlUXSgIEcfm0pgf36Erk4Ho+gP1zmtjUetsZC6+HQ4j5zoSIiIq6g3SSo0wjW\njiw7o1doOGY0/l26cGDuXLLffMt0TrVQnsHSSGA88LZt27ssy7oA2OScLBEREZETFfz4I4l330P+\nt98SMmMGjSZMwPL8w3aPez6F9Y9Ck45w81RzoSIiIq7CJwA6zoL0nbBlkekal2C5uRH61HR8//53\n0iZPJvfzz00nVXlnNViyLMsd6GrbdlfbtmcB2Lb9m23bI5xaJyIiIgIc+eADEnv1xi4tJWr569S9\n844TF2T+BG88AA2bwt2LwU0nVYuIiABwWVdo0gE2PQ3ZyaZrXILl5UXYCy/gc8klpIx6mPzvvjOd\nVKWd1WDJtu1S4Hont4iIiIicwC4tJfOZZ9g/egw+l19O4zfXUOuKK05clHcQVnQHz1rQOwG8/czE\nioiIuCLLgk5zABvWjQVtWg2Au58vEXGxeNSvT/KgwRTu3Ws6qcoqz6VwOyzLes+yrL6WZd31v4fT\nykRERKRGK83OJjlmEIcWv0zdXj2JemUJHvXrn7iopBAS+kBuBvRcCQHhZmJFRERcWd1IaDsBflkP\nP71vusZleNSvT2R8HLi5kTxgIMWZmaaTqqTyDJZ8gENAO6DL8cdtzogSERGRmq3gl1/Y270HeVu3\n0mjaVEKmTMHy8jpxkW3DeyMgeTPcsbDs7jciIiJyatcOgeArYN04KDhqusZleEVHExG7iJKsLJJj\nBlGak2M6qco568GSbdsPnOLR35lxIiIiUvMc/fhjEnv2ws7PJ2rpawR263bqhV8+C98nQNtJ8Ded\nRC0iIvKX3D2gy1zISYNNT5mucSm1rriC8HlzKdyzh5SHRuAoKjKdVKWc9WDJsqwmlmVtsCzrh+Of\nN7Msa5Lz0kRERKQmsR0OMufOJXXESLwvvojoNWuo3bz5qRfvegc2ToMrusONYyo3VEREpKoKbwnX\nDIAtsZC63XSNS/G74QZCn5rOsc2bSXvsMWyHw3RSlVGeS+HigfFAMYBt298DPZ0RJSIiIjVLaU4O\nKUOGcmhRLAH33E3UsmV4Bjc89eLU7fD2YIi4Frq+WLYpqYiIiJyd9o+DXzCsHQWlJaZrXErA7bfT\ncMxojq5bT8bMmdja6PyslGewVNu27a1/+pr+KxQREZHzUvjbbyR2607u11/TaMpkQqZNw+3P+yn9\nz5EUWNkL/BpAj+Xg6VO5sSIiIlWdTwB0nAXp38PWWNM1LifowQcJ7NeXrKXLOLxkiemcKqE8g6WD\nlmVdCNgAlmXdA6Q5pUpERERqhJyNm0js1p3SnByiXn2FwF69sE53BlJhLqzsCUXHoPfqsuGSiIiI\nlF/T2+HiW2HjU5CdbLrGpViWRfBjj1GnYwcy5zzDkXffNZ3k8sozWBoGxAKXWpaVCowCBjulSkRE\nRKo12+HgwEsvkTJ0KF7R0TRe8wa1W7Y8/QscpfDWQMjYBd1egYaXVV6siIhIdWNZ0GkOYMO6sWV3\nWpXfWW5uhM6aRe1rr2X/xEnkfvmV6SSXVp7Bkm3b9k1AA+BS27avL+frRURERCjNzSNlxAgOvjif\ngNu7ErX8dTxDQv76RZ8+AT+vgw4z4eKbK6VTRESkWguMgjbj4Zf18NP7pmtcjpuXF+HzX8T7ootI\nGTmS/J0/mE5yWeUZDL0JYNt2nm3bOce/tqbik0RERKS6KkpMJLFnD3I3fUbwhPGEzJyJm88Z9kn6\ndhn864Wyu9i0iqmcUBERkZrguiEQfAWsGwcFR03XuBz3OnWIiIvFo25dkgcNomjfPtNJLumMgyXL\nsi61LOtuIMCyrLv+8Lgf0I6ZIiIiclZyv/iCvd26U3rwEJEvLyaoX7/T76f0P3u/hPdHwYXtoMMs\n3QFORESkIrl7Qpe5kJMGm54yXeOSPBs2JGLxYnA4SBoYQ8nBg6aTXM7ZnLF0CXAbUBfo8ofH1cBA\n56WJiIhIdWDbNgfj4kkeNBjPsDCi16zB97rrzvzCQ/+F1X0h6EK45xVw93B+rIiISE0T3rLsrOAt\nsZC63XSNS/K+oDERsYsoycwkedBgSnPzTCe5FMs+y026LMtqbdv2v53cc15atmxpb9u2zXSGiIiI\nHOc4doz9EyeSs/5D/Dt1IuSp6bjVqnXmF+ZnweKb4NhhGLgRgho7P1ZERKSmKjgC81uBX0MYuEm/\nzDmNnE2bSBn+EL7XXUfEwgVYXl6mkyqNZVnbbds+5Z1WyrPH0h7LsiZYlhVnWdaS/z0qqFFERESq\nmaLkZBJ79iLno49pOHYMoc8+c3ZDpdJiWN0PspOg5woNlURERJzNJwA6zoL072FrrOkal1WnbVtC\npj5J3tdfs3/iJGyHw3SSSyjPGPJd4EvgU6DUOTkiIiJSHeT961+kPvwINhARF4ff9f84uxfaNqwb\nA3u/gDsWQVRrp3aKiIjIcU1vh4tvhY1PwWVdoW6E6SKXVPfuuyk5cIADc+fh0bABwWPHmk4yrjyD\npdq2bT/qtBIRERGp8mzb5vCrr5E5Zw7eF15I+Evz8YqMPPsDbF4A21+FG0bDVb2c1ikiIiJ/YlnQ\naQ4suA7WjYVeK3XTjNOoN2gQJZmZHH55CR4NGlDv/vtNJxlVnkvh3rcsq5PTSkRERKRKc+Tns3/c\no2TOmkWd9u2JTlhZvqHSz+vho4llvyVtO8l5oSIiInJqgVHQZjz8sh5+et90jcuyLIvgiROpc/PN\nZM6cxZEPPjCdZNQZN++2LCsHsAEL8AUKgeLjn9u2bfs7O/JsafNuERERM4pTU0l+6CEKf/yJBiNH\nUG/QIKzy/JYzfSe8fCvUvxgeWA9etZ0XKyIiIqdXWgxxbeHYIRi2BXxc5p/8LsdRWEjygwM49t13\nRMbF4tu6+l7Cf16bd9u2Xce2bf/jf7rZtl3rD5/rvzAREZEaLm/LVvbe043ipGTCFy6g/uDB5Rsq\n5WTAip5lG4f2StBQSURExCR3T+gyF3LSYNNTpmtcmpu3N+ELXsI7OpqU4Q9RsHu36SQjzvpSOMuy\nrj7F40LLsnQfQhERkRrItm0Ov76cpP79cQ8MJHr1auq0aVO+gxTnQ0IvyD8MvRPAP8QprSIiIlIO\n4S3hmgGwJRZSt5uucWnu/v5ExMfh5u9PUswgilJSTCdVuvLssbQA2AzEH39sBt4AfrYs6xYntImI\niIiLchQWkjZxEhnTp+P3z38SvXoV3hc0LudBHPDOEEj9Fu6Kh5ArnRMrIiIi5df+cfALhrWjoLTE\ndI1L82zUiMj4OOziYpIfHEDJ4cOmkypVeQZL+4Hmtm23sG27BXAV8BtwMzDbGXEiIiLieorT09nX\ntx9H3nqL+sOGET7/Rdz9/Mp/oM9nwq634eYn4bLbKj5UREREzp1PAHScBenfw9ZY0zUuz/uii4hY\nuIDi9HSSBw3GceyY6aRKU57BUhPbtnf97xPbtncDl9q2/VvFZ4mIiIgrOvbtt+y9pxtFe/YQPv9F\nGjw0HMutPG8njvt+NXw+C5rfC38fUfGhIiIicv6a3g4X3wobn4LsZNM1Lq/21VcT9tyzFOzaRcrD\nD2MXF5tOqhTleSe4y7KshZZl/fP4YwGw27Isb8ruEiciIiLVWFbCKvbddz9uvrWJXr2KOjfddG4H\nStoC7w6DqOuh8/NQno2+RUREpPJYFnSaA9iwfpzpmiqhTvv2NJoyhbzPvyBt8hRs2zad5HTlGSzd\nD+wBRh1//Hb8a8VA24oOExEREddgFxWRNnkK6U88gW/r62j8xht4X3TRuR0sax8k9IaAcOixDDy8\nKjZWREREKlZgFLQZDz+vgx/fN11TJQT26E79YcM48vbbZC1fYTrH6azqND1r2bKlvW3bNtMZIiIi\n1UZxZiapI0eRv2MH9WJiaDByBJa7+7kdrOAovHwL5OyHARug/sUVGysiIiLOUVoMcW3h2CEYvhW8\n65gucnm2bZP1+nIC7rwTdz9f0znnzbKs7bZttzzVc2c8Y8myrNXH/9xpWdb3f35UdKyIiIi4hvzv\nviPxnm4U/PQTYc8/R8NHHj73oVJpCazpD4d+he5LNVQSERGpStw9octcyEkr229JzsiyLIL63lst\nhkpn4nEWa0Yd/1O3axEREakhst98i/QnnsAjOJjohJX4XHLJ+R3w44mw5xPoMg8uaFMRiSIiIlKZ\nwlvCNQPK7hDXrDuEXW26SFzE2eyx9L+LKKfbtr3vzw9nxomIiEjlsouLSZ82nbSJE6l9TUui31h9\n/kOlrfGwZRG0Hg4t7q+QThERETGg/ePg2xDeH1V2NrIIZ3fGkpdlWb2Bv1uWddefn7Rt+62KzxIR\nEZHKVnLoEKkjR3Fs2zaCHniAhqMfwfI4m7cKf2HPBlj/KDTpADdPrZhQERERMcMnADrOhDfuh61x\n0Hqo6SJxAWfzbnEw0AeoC3T503M2oMGSiIhIFZf/wy5SHnqI0sOHCZ0zm4Auf/6Rfw4yfyp749nw\nMrh7Mbid4/5MIiIi4jqa3gEX3wIbp0PTrmV3epUa7YyDJdu2vwK+sixrm23bL59unWVZN9u2/UmF\n1omIiIjTHXnvPdIen4x7vSCiViyn1uWXn/9B8w7Ciu7g4QO9EnT3GBERkerCsqDTM/DStbBuHPRa\nYbpIDDubPZYA+Kuh0nGzzrNFREREKpFdUkLGzFnsH/cota68ksZr1lTMUKmkEFbdC7kZ0Gsl1I04\n/2OKiIiI6wiMgrbj4ecP4Mf3z7xeqrWzHiydBasCjyUiIiJOVJKVRdLAgRx+9VUC+/Yl8uXFeAQF\nnf+BbRvWjoSkf8MdC8vuICMiIiLVz3VDIfhvsG4sFOaYrhGDKnKwZFfgsURERMRJCn76icR7upG/\n/VtCnn6aRhMnYHl6VszBv3oOvlsJbSfC306654eIiIhUF+6ecNtcyEmDjU+ZrhGDKnKwJCIiIi7u\n6Lp1JPbshV1SQtTry6h7150Vd/Dd78KGqXBFN7hxbMUdV0RERFxTxDVwzYOwNRZSvzVdI4ZU5GAp\nsQKPJSIiIhXILi0l89lnSX1kND5Nm9J4zRvUatas4r5B6rfw1iAIbwVd55dt7CkiIiLVX/vJ4NsA\n3h8FpSWma8SAM94V7o8sy/ob0BTw+d/XbNteevxPne8uIiLigkqPHCF19BjyvvqKuj170GjCBCwv\nr4r7BkdSYWUv8GsAPVeAp8+ZXyMiIiLVg08AdJwFb9wPW+Og9VDTRVLJznqwZFnWFKANZYOldUBH\n4CtgqVPKRERE5LwV/vorycOGU5yWRqMnnySwR/cK/ga5sLIHFOVB37fLhksiIiJSszS9Ay6+BTZO\nh6ZdISDcdJFUovJcCncP0B5It237AeBKIMApVSIiInLejn78MXt79MSRf4yo116r+KGSwwFvxUDG\nLuj2CgQ3rdjji4iISNVgWdDpGbAdsG6c6RqpZOUZLOXbtu0ASizL8gcygQjnZImIiMi5sh0ODrzw\nAqkjRuJ98UU0XrOG2lc3r/hvtOEJ+PkD6DATLr654o8vIiIiVUdgFLQdX/be4Mf3TddIJSrPYGmb\nZVl1gXhgO/At8G+nVImIiMg5Kc3JIWXoMA4uWEjA3XcRtWwZnsHBFf+Nvl0GX8+DawZAq5iKP76I\niIhUPdcNheC/wbqxUJhjukYqyVkPlmzbHmrbdrZt24uAm4H7jl8SJyIiIi6g8Le9JHbvQe5XXxH8\n+CRCpk/HrSI36f6fvV+W3fnlwnbQYZbuACciIiJl3D3h/9i77/Coyvz94++TDiEFQkJIMqEFBAUR\nSQAbQhARsVMS1HVXwUqw7K5t3V3L2l0rRVkRXWtCsWJBJeBiASaAIAhIKGGSEAghvWfm+f0R/K4/\nF5VAkpNyv64r1yaTmTm36+Vk5j7P+TwXPAOl+yD9IbvTSDM56mLJsqzlP35vjNljjNn009tERETE\nPqXpK9gzZQru4mJiF7xElyuuwGqKwqdgJyz8HXTpA5NeBu8GbTArIiIibZ0jARKmwdp5kLPe7jTS\nDH6zWLIsK8CyrC5AV8uyOluW1eXwV08guqkDioiIyC8zHg/5c+eSfdNN+MXG0mvxIgKHDWuag1UW\nwptTAAsuT4MOoU1zHBEREWndxvwdAsPrVzi76+xOI03saFYsXU/9TKX+1M9VWnf46z1gdtNFExER\nkV/jLisn55ZbOfjcLIIvupAeb76Bb1RUEx2sFhZeBUV7IflN6NKraY4jIiIirV9ACIx/DPZthLX/\nsjuNNLHfXL9ujHkWeNayrJnGmFnNkElERER+Q01WFtkpKVTv2k23u++i81VXNc2lbwDGwEd/ht3/\ngUtegB6nNc1xREREpO048RLoey6kPwgnXgQhMXYnkiZyNJfCJR7+NseyrMt+/tXE+URERORnylat\nYvfkKdQdyCd2/ot0+f3vm65UAlg9F9a9Amf9CU6Z2nTHERERkbbDsuD8f4LxwEd32J1GmtDRTNw8\nG0gHLjzC7wzwdqMmEhERkSMyxlAwfz75Tz2Nf79+xMyZjV9ME5/92/4xLLsHBlwEo//atMcSERGR\ntqVzDxh9N3z2d9i6FAZcYHciaQKWMcbuDI0mPj7eZGRk2B1DRESk0XkqKsi95x5KP/6E4PPH0/3B\nB/Hq2LFpD5q3GRaMg7A4uPpj8Gvi44mIiEjb466Ff42CikOQshb8g+xOJMfAsqx1xpj4I/3uaIZ3\n//gkYZZlPWdZ1nrLstZZlvWsZVlhjRdTREREjqQmO5s9Uy+n9JNlRPz5T0Q9+WTTl0ql++GtZPAP\nhqmpKpVERETk2Hj7wgXPQOk+SH/I7jTSBI66WAJSgXxgIjDp8PdpTRFKRERE6pV/8w17Jk6idt8+\nHP+aR9j06U07TwmgthJSL4eKApj6FgR3b9rjiYiISNvmSICEabB2HuRusDuNNLKGFEvdjTH/MMbs\nPvz1INCtqYKJiIi0Z8YYCl55hb3TpuMTEU6vRQvpdNZZzXFgePcmyFkHl70IUac0/TFFRESk7Rvz\ndwgMhw9uAXed3WmkETWkWPrUsqxky7K8Dn9NAZY1VTAREZH2ylNVRe6dd3Lg0ccIGpNIj7dS8evR\no3kOvvJR2PI2nHOfBmyKiIhI4wkIgfGPwb6N4HzR7jTSiI56eLdlWaVAIOA5fJMXUH74e2OMCW78\neA2j4d0iItLa1ebmkp0yk6qtWwm/eSZh11+P5dWQ80DHYdMieHs6nHIlXDy7fptgERERkcZiDLw5\nBbK+hhlrIKSJd7eVRtMow7uNMUHGGC9jjM/hL6/DtwW1hFJJRESktatwOtk9aTI1e/cSM2cOXW+8\nsflKJddaeG8G9DgDLnhapZKIiIg0PsuC8/8JHjd8fKfdaaSRNOjdqmVZnS3LGmZZ1sgfv47iMedZ\nlrXdsqxMy7LuOsLvRx7eaa7OsqxJP/ud27Ksbw9/vd+QrCIiIq2FMYZDr79B1tXX4B0SQs+FaQQl\njm6+AIVZ9cO6g6Mg6XXw8Wu+Y4uIiEj70rkHjLoLti2FrUvtTiONwOdo72hZ1nTgFiAG+BYYAXwD\nJP7KY7yBOcBYIBtwWpb1vjHm+5/cbS/wB+DPR3iKSmOMpoaKiEib5amuJu+BByhe8jadRo0i6onH\n8Q4Kar4AVSXwVjK4a+DyhdCxS/MdW0RERNqn02bApoXw8R3Q+2zwb8b3PtLoGrJi6RYgAcgyxowG\nhgBFv/GYYUCmMWaXMaYGSAUu/ukdjDF7jDGb+O/sJhERkXahdv9+sq66iuIlb9P1phuJmTuneUsl\ndx0svgbyt8OUVyG8X/MdW0RERNovb1+48BkoyYUVD9udRo5TQ4qlKmNMFYBlWf7GmG3ACb/xmGjA\n9ZOfsw/fdrQCLMvKsCxrtWVZlxzpDpZlXXf4Phn5+fkNeGoRERH7VKzfwO5Jk6jZkUn0rOcIv/nm\n5pun9KNP/wqZn8GEJ6H3qOY9toiIiLRvjmEQfw2seQFyN9idRo5DQ97BZluWFQq8C3xmWdZ7QFbT\nxPo/PQ5PHb8ceMayrD4/v4Mx5l/GmHhjTHx4eHgTxxERETl+hWkLyfr97/Hq2JGeaakEjx3b/CGc\n82HN8zBiBsRf3fzHFxERERnzdwgMhw9uqV9JLa1SQ3aFu9QYU2SMuQ/4G/AScMRVRD+RAzh+8nPM\n4duO9pg5h/93F7CS+svvREREWiVTU8O+e+8j7957CRwxgl4LF+Lft2/zB9mZDh/dAX3Hwbn/aP7j\ni4iIiAB0CIXzHoV9G8H5ot1p5BgddbFkWdYIy7KCAIwxX3B0RY8T6GtZVi/LsvyAZOCodnc7vAOd\n/+HvuwJnAN//+qNERERaprr8fLL+cDVFaWmEXTsdxwvP4x0S0vxB8rfDwj9AeH+Y9BJ4eTd/BhER\nEZEfnXQpxI2F9AehONvuNHIMGnIp3PNA2U9+Ljt82y8yxtQBKcAyYCuw0BizxbKsByzLugjAsqwE\ny7KygcnAPMuythx++AAgw7KsjcAK4NGf7SYnIiLSKlRu2sTuSZOp2rqV6KeeJOJPf8LytqHQKS+A\nN6eAjz9cnqodWERERMR+lgUT/gkeN3x8p91p5Bj4NOC+ljHG/PiDMcZjWdZvPt4Y8xHw0c9u+/tP\nvndSf4nczx/3NTCoAflERERanKK33yHvvvvwCQ+n51tvEtC/vz1B6qoh7Uoo2QdXfwShsfbkEBER\nEfm5zj1h1F3w+b2wdSkMuMDuRNIADVmxtMuyrJsty/I9/HULsKupgomIiLRmpraWvAcfYt9f/kKH\noafSc/Ei+0olY+CDW2Hv13Dp8xATb08OERERkV9y2gyIOAk+vgOqS+1OIw3QkGLpBuB06odvZwPD\ngeuaIpSIiEhrVnfoEHuvmUbh66/T5Q9/IPbFF/Hp3Nm+QF8+DRvfhFF/gYET7cshIiIi8ku8feHC\nZ6AkF1Y8bHcaaYCjvhTOGHOA+uHbR2RZ1t3GmEcaJZWIiEgrVbllC9kzZ+IuOETU448RctFF9gb6\n/n1Yfj8MnARn32FvFhEREZFf4xgG8dfAmhfg5CkQpY3hW4OGrFj6LZMb8blERERaneIPPiDr8ivA\nQI833rC/VMrdAG9fBzHD4OI59cMxRURERFqyMX+HwHD44BZw19mdRo5CYxZLercqIiLtkqmrY/9j\nj5N7+x10GDSIXosX0WHgSfaGKsmFt6bWvzFLfgN8A+zNIyIiInI0OoTCeY/Cvo3gfNHuNHIUGrNY\nMr99FxERkbalrrAQ13XXcejll+l8xRXEvrwAn7Awe0PVlMObSVBdBpenQacIe/OIiIiINMRJl0Lc\nWEh/EIqz7U4jv0ErlkRERI5R1fbt7Jk8hQpnBt0fepDIv/0Vy9fX3lAeT/3lb/s3w6QF0O1Ee/OI\niIiINJRlwYR/gscNH99pdxr5DUdVLFmW5W1Z1m2/cbdFjZBHRESkVSj55BP2JE/F1NTQ4/XXCJ3Y\nQnZbW34/bFsK4x6BfufanUZEpN0rqarl9dVZXDLnK5L/9Q0rtx/AGF3sIfKbOveEUXfVv6/ZutTu\nNPIrrKN9UbMsa60xZlgT5zku8fHxJiMjw+4YIiLShhm3m/xnnqXgxRfpMGQIMc89i094uN2x6m14\nHd6bAfHTYMKTGtYtImITYwwZWYWkrnXx4Xe5VNV6OKFbEKVVteQWVzE4JoSUxL6cMyACS6/VIr/M\nXQvzzoaqIpixBvyD7E7UblmWtc4YE3+k3/k04Hm+sixrNpAGlP94ozFm/XHmExERaRXcxcXk/Pl2\nyletIvNjuZEAACAASURBVHTKFCL/eg+Wn5/dsert+RI+uBV6j4bxj6lUEhGxwcGyat5en02q08Wu\n/HIC/by5dEgMyQkOTo4JodZteHt9NnNX7uTaVzPoHxnEzMS+jB8YiZeXXrdF/oe3L1z4DLx0Lqx4\nGM57xO5EcgQNWbG04gg3G2NMYuNGOnZasSQiIk2lescOXCkp1ObuI/Kee+icnGR3pP8q2Anzx9Tv\nADfts/rdVEREpFm4PYZVO/JJc7r47Pv91HkMQ3t0JinBwYRB3Qn0/99z+XVuD+9vzGX2ikx25ZcT\nF9GJGaP7cOHJUfh4N+YYXJE2YukfYd3LcG06RA2xO0279Gsrlo66WGoNVCyJiEhTKP38c3LvuBOr\nY0dinn2GjkOH2h3pvyoLYf5YqCiAa5dDl952JxIRaReyCytYlJHNogwXucVVdO7oy8RTY0hKcNC3\n29FdruP2GD7evI/Z6ZlsyyulR1hHbhrVh0uHxODno4JJ5P9UFsGcYRAUCdPTwbshF19JY2iUYsmy\nrG7Aw0CUMWa8ZVknAqcZY15qvKjHR8WSiIg0JuPxcHD2HA7OnUvAyScT89yz+EZG2h3rv9y18PpE\nyPoafv8+9Djd7kQiIm1aTZ2Hz7fuJ9XpYtWOfADOjOtKckIs55wYgb+P9zE9r8dj+GzrfmanZ/Jd\nTjHRoR24YVQfJg+NIcD32J5TpM3Z/DYsvhrOexRG3Gh3mnansYqlj4GXgXuMMYMty/IBNhhjBjVe\n1OOjYklERBqLu6yM3DvupCw9nZBLLyXyvnvx8ve3O9Z/GQNLb4V1r8Alz8Mpl9udSESkzco8UEqa\n08WS9TkcKq+he0gAk+MdTB4ag6NLx0Y7jjGGlT/kM2v5DtbvLaJbsD/XjezD5cNi6eCngknaOWPg\njcmw9xuYsRZCou1O1K40VrHkNMYkWJa1wRgz5PBt3xpjTmnErMdFxZKIiDSG6l27yU5JoSYri253\n303nKy5vebv2fDMXlt0NZ/4RzrnX7jQiIm1ORU0dSzftY6HTRUZWIT5eFucM6EbSMAcj+4bj3YTD\nto0xfLOzgOfSd7B61yHCAv2YflZvfndaDzodYWaTSLtRuAfmjIC4MZD8ht1p2pXG2hWu3LKsMMAc\nftIRQHEj5BMREWkxSleuJPfPt2P5+hK7YAGBw4fZHel/bf8Elv0FBlwIiX+zO42ISJthjGFTdjGp\nThcfbMylrLqO3l0DuXt8fy47NYbwoOZZuWpZFqfHdeX0uK449xxiVnomj32yjRe+2Mk1Z/TiD2f0\nJKSDb7NkEWlROveEUXfB5/fCtg+h/wS7EwkNW7F0KjALOAnYAoQDk4wxm5ouXsNoxZKIiBwrYwwF\n8+aR/+xz+A/oj2PWLHyjW+AS67zNsGAchMXB1R+BX6DdiUREWr2iihre3ZBDqtPFtrxSAny9OH9Q\nd6YOiyW+R+cWsWp1o6uIWemZfL51P0H+Plx1eg+mndmbLoF+dkcTaV7uWph3NlQVwYw14H90w/Ll\n+DTWpXABQAowDigFvgFmGWOqGivo8VKxJCIix8JTXk7u3X+h9NNPCb7wQro/cD9eHTrYHet/le6H\n+WPA467fbje4u92JRERaLY/HsHp3AWlOFx9vzqOmzsOg6BCmJDi4aHBUi10R9H1uCXNWZPLR5n0E\n+Hhz5YhYrh3Zm4igALujiTQf11p4aSyMmAHnPWx3mnahsYqlhUAJ8OOFjJcDocaYyY2SshGoWBIR\nkYaq2buX7BkzqN65i4jbb6fLH37fIs5M/4/aSnjlAjjwPVz9MUS1mBGHIiKtyoGSKhaty2Zhhous\nggqCAny4dEg0U+IdDIwOsTveUduxv5S5K3fy3rc5+Hp7MXVYLNeN7E1UaAs8MSLSFJbeVr+JybUr\n9L6oGTRWsfS9MebE37rNTiqWRESkIcpWfUnOn/6EZVlEP/0UgaefbnekIzMGFl8DW96BpNdhwAV2\nJxIRaVXq3B5Wbs8n1elixfYDuD2G4b26kDzMwfiB3Qnwbb07ru05WM7clZm8vT4Hy4JJQx3cNKpP\no+5WJ9IiVRbB7AQIjqpfye3Vev87bg0aa3j3esuyRhhjVh9+0uGAWhwREWl1jDEcWrCAA08+hX9c\nHDFzZuPncNgd65etfBS2vA3n3K9SSUSkAbIKylmY4WJRRjYHSqvp2smfa8/qzZT4GHqHd7I7XqPo\n2TWQxycN5uYxfXnhi50sdNavxrrklGhmjO7TZv45Rf5Hh1AY/2j9ybe1L8KIG+xO1G41ZMXSVuAE\nYO/hm2KB7UAdYIwxJzdJwgbQiiUREfktnooK9v31b5R89BFB551H1MMP4dWxBZ/V3bQI3p4Op1wJ\nF8+GlniZnohIC1JV62bZljzSnC6+3lmAlwWjToggKcFBYv8IfL297I7YpPaXVDHvi128uTaLmjoP\nE06OImV0HCdEasCxtEHGwBuTYO9qmLEWQlrgxittRGNdCtfj135vjMk6hmyNSsWSiIj8mprsHLJT\nUqjevp3wP95G2PTpLXOe0o9ca+vnKsXEw+/eBR/t/CMi8ku27ishzeninQ05FFfWEtO5A0nxDibF\nx9A9pP3NHTpYVs38Vbt57Zs9lNe4GXdSN2Ym9m1Vc6REjkrhHpgzAuLGQPIbv3l3OTaNUiy1BiqW\nRETkl5SvXk3Orbdh3G6in/wnnUaOtDvSryvMqt8Bzq9T/dyAjl3sTiQi0uKUVdfxwcZcUp0uNrqK\n8PP24tyTupGcEMvpfcLw8mrBJw+aSWF5DS9/tZuXv95DaVUdif0jSEmM49TYznZHE2k8Xz4Nn98H\nyW9C/wl2p2mTVCyJiEi7ZYyh8NVX2f/4E/j17Iljzmz8eva0O9avqyqBBeOgJAemfQ7h/exOJCLS\nYhhjWL+3kDSni6Wb9lFR46Zft04kJcRy6ZBougRqdeeRlFTV8urXe3jpy90UVtRyZlxXZibGMbx3\nmN3RRI6fuxbmjYSqYpixBvx16WdjU7EkIiLtkqeqirx776P4vffodM4Yoh59DO9OgXbH+nUeN7yV\nDJnL4XdvQ+9RdicSEWkRCsqqeWdDDqlOF5kHyujo582FJ0eRNMzBEEdoy760uQUpr67jjTVZ/Os/\nuzlYVs2wnl2YOSaOM+O66v9Dad1ca+GlsTBiBpz3sN1p2hwVSyIi0u7U7ttHdspMqrZsoevNM+l6\nww1YXq1gYOsnd8PquXDBMxB/td1pRERs5fEYvsw8SJrTxaff51HrNgyJDSU5wcGEk6Po5N+QTa7l\np6pq3aSu3csLX+wir6SKUxyhzEyMI7F/hAomab2W3gbrXoFrV0DUKXanaVNULImISLtS4XSSfcut\nmOpqop54nKDERLsjHR3nS/DhH3WmTUTavdyiShZlZLMww0VOUSWhHX25bEgMSQkO7W7WyKrr3CxZ\nl8PclZlkF1ZyYvdgZibGMe6kSM2oktansghmJ0BwVP2MSi9vuxO1GSqWRESkXTDGUPjWW+x/+BH8\nYmKImTsH/9697Y51dHaugNcnQtw5MPUtvRESkXanps5D+rb9pDpdfPFDPsbAmXFdSUpwMPbEbgT4\n6nWxKdW6Pby7IYe5K3ey+2A5/bp1YsboOC44OQpvFUzSmmxeAouvgfMegxE32J2mzVCxJCIibZ6n\npoa8Bx6gePESOp19NlH/fALvoFZyVjv/B5h/DoTEwLRlGjgpIu3KzvwyFjpdLFmfzcGyGroF+zMl\n3sHkoQ5iwzraHa/dcXsMSzflMmdFJj/sL6NX10BuGtWHS4ZE4+vdCi4pFzEG3pgEe1fDjLUQEm13\nojZBxZKIiLRptfsPkHPzzVRu3EjYjTcQPnNm65inBFBeAPPHQE1Z/ZLt0Fi7E4mINLnKGjcffbeP\nNKeLtXsO4e1lMaZ/BMnDHIzsG46PCgzbeTyGT7/PY1Z6JltyS4jp3IEbR/Vh0tAY/H20ekxauMI9\nMGcExI2B5DfsTtMmqFgSEZE2q2LDBrJvvhlPeQVRjzxC8Lhz7Y509Oqq4dVLIGcd/OFDcCTYnUhE\npEltzikm1bmX9zbkUlpdR8+wjiQlxDJxaDQRQQF2x5MjMMawYvsBnlueybeuIiKDA7j+7N5MHRar\nyxOlZfvyafj8Pkh+E/pPsDtNq6diSURE2qTCRYvIe+Af+EZGEjNnNgH9+tkd6egZA+/eBBvfhIkv\nwaBJdicSEWkSxZW1vP9tDqlOF1tyS/D38eL8Qd1JSnAwvFcX7UDWShhj+CqzgOfSd7B29yG6dvLn\n2rN6ceWIHgRqdz5pidy1MG8kVBXDjDUaNXCcVCyJiEibYmpqyHvkEYreSiXwjDOIfvKfeIeG2h2r\nYX48izbqbhh1l91pREQalTGGNbsPsdDp4sPv9lFd52FA92CmDnNw8eBoQjr62h1RjsOaXQXMXpHJ\nqh0H6dzRl2ln9uKq03sSHKB/r9LCuNbCS2O1424jULEkIiJtRt3Bg2TfciuV69YRNn0a4bfdhuXd\nypbif/8+LPwdDJwEE+eDztaLSBtxoLSKJetyWJjhYvfBcoL8fbjolCiSE2IZGB2s1UltzPq9hcxJ\nz2T5tgMEBfhw9ek9ufqMXnQO9LM7msh/Lb0N1r0C166AqFPsTtNqqVgSEZE2ofK778hOmYm7uJju\nDz1IyIRWeL187gZYMB4iB8Lvl4KvZoqISOtW5/bwnx35pK51kb7tAHUew7CeXUhKcHD+oO508Gtl\n5b802OacYmanZ/LJljwC/by58rQeXHtWb7p28rc7mghUFsHsBAiOqt8oxUuvScdCxZKIiLR6Re+8\nS9699+LTtWv9PKUBA+yO1HAlufBiInj51L+x6RRhdyIRkWPmOlTBwgwXizKyySupIizQj0lDY5gc\n7yAuopPd8cQGP+wvZXZ6Jks35eLn48XUYbFcP7IPkSE6iSI227wEFl8D5z0GI26wO02rpGJJRERa\nLVNby/7Hn6DwtdfoOHw40c88jU/nznbHariacnh5PBTshGmfQreT7E4kItJg1XVuPt2ynzSniy8z\nD2JZcHa/cJITHCT274afj5fdEaUF2JVfxtyVO3lnQw7elsXk+BhuHNWHmM4d7Y4m7ZUx8MYk2Lsa\nZqyFkGi7E7U6KpZERKRVqjt0iJzb/kjFmjV0+f1VRNx+O5ZPK9x5xuOpn6m0/SOYmgr9xtmdSESk\nQbbnlZLmdPHOhmwKK2qJDu3AlHgHk+JjiA7tYHc8aaFchyqYu3Ini9e5MAYuHRLNjNFx9OwaaHc0\naY8K98CcERA3BpLfsDtNq6NiSUREWp2q77/HlZKC+2AB3f/xACEXX2x3pGP3+X31u8Cd9yiMuNHu\nNCIiR6W8uo6lm3JJdbrYsLcIX2+Lc0+MJCnBwRlxXfH20iBuOTr7iiuZ98Uu3lq7l1q3h4sGRzFj\ndBx9u2n7d2lmP+7Km/wW9D/f7jStioolERFpVYo/WMq+v/0N79BQYmbNosOggXZHOnYb3oD3boL4\na2DCU9oBTkRaNGMM37qKSHO6+GBjLuU1buIiOpGc4ODSIdGEaRizHIcDpVXMX7Wb11dnUVnrZvzA\nSGaMjuOkqBC7o0l74a6FeSOhqgRmrAF/zYM7WiqWRESkVTB1dRx46mkOLVhAh/ihxDzzDD5du9od\n69jt+QpevRh6ngFXLAZvX7sTiYgcUWF5De9syCHN6WL7/lI6+HpzwcndSR7m4NTYzlgqxaURHSqv\nYcGXu/n313sora7jnAERzEzsy2BHqN3RpD1wrYWXxsJpKTDuIbvTtBoqlkREpMVzFxWR88c/Uf71\n13S+/HK63XUnlp+f3bGOXcFOmD8GAsNh2mfQQW+WRaRl8XgM3+wqINXpYtnmPGrcHgbHhJCUEMuF\ng7sTFKAyXJpWcWUt//56Dy99uZviylpG9gtnZmIcCT272B1N2rqlt8G6V+C6ldB9sM1hWgcVSyIi\n0qJVbf+B7JQU6vLyiLz374ROmmR3pONTWQjzx0JFAVy7HLr0tjuRiMj/ySuuYvE6F2kZLlyHKgnp\n4MulQ6KZEu/gxKhgu+NJO1RWXcdr32Qxf9UuCsprGNG7Czcn9uW0PmFaLSdNo7IIZifU7w43fTl4\nedudqMVTsSQiIi1WySfLyL37brw7dSJm1nN0OOUUuyMdH3dt/Xa2e76Cq96rvwxORMRmtW4PK7Yd\nINXpYuX2A3gMnN4njKQEB+NOiiTAVx+qxH6VNW7eXLuXeV/s5EBpNafGhjJzTF9G9QtXwSSN77vF\nsGQajH8chl9vd5oWT8WSiIi0OMbtJv+5WRTMm0eHU04h+rln8Y2IsDvW8THm8NLql+HiuTDkCrsT\niUg7t/tgOWlOF0vWZ5NfWk1EkD+T42OYEu+gR5i2fJeWqarWzaJ12bywcic5RZUMig4hJTGOsQO6\n4aXdCKWxGAOvT6yfuTRjTf3qJflFKpZERKRFcZeUkHP77ZR/8R9CJ0+i29/+hldrnqf0o9XPwyd3\nwZm3wTn32Z1GRNqpqlo3H2/eR+paF2t2H8Lby2L0CREkJzgYdUI4Pt5edkcUOSo1dR7e3ZDDnJWZ\nZBVU0D8yiBmj4zh/UHe8VTBJYzi0G+aOgL5jIel1u9O0aCqWRESkxajeuZPsm2ZQk5ND5F/vITQp\nqW0sb/9hGbyVDCecD1NeAy99cBOR5rUlt5g0p4t3NuRQWlVHbJeOJCU4mDQ0hm7BAXbHEzlmdW4P\nSzftY/aKTDIPlNE7PJAZo+K4+JQoFaVy/FY9Bcvvh+S3oP/5dqdpsVQsiYhIi1C6fDm5d9yJFRBA\nzLPP0DH+iH+bWp/9W+ClcyGsD1z9Mfjp8hIRaR4lVbW8/20uaU4X3+UU4+fjxfiBkSQlOBjRK0yX\nDUmb4vEYPtmSx6z0TLbuKyG2S0duHNWHiafG4OejgkmOkbsW5o2EqpL6S+L8O9mdqEVSsSQiIrYy\nHg8H58zl4Jw5BAwcSMzsWfhGRtodq3GUHYAXE8FTB9emQ3CU3YlEpI0zxpCRVUjqWhcffpdLVa2H\n/pFBJCc4uGRINKEd28ClxSK/whjD51sPMCt9B5uyi4kKCeCGUX2YEu/QIHo5NnvXwIJz4bQUGPeQ\n3WlaJBVLIiJiG3dZGbl33ElZejohl1xC5P334eXvb3esxlFbCf++sH7F0tUfQ1Qr39FORFq0g2XV\nvL0+m1Sni1355QT6eXPRKdEkJzg4OSakbVxWLNIAxhj+s+Mgs5bvICOrkPAgf64f2ZvLh8fS0c/H\n7njS2nxwK6z/N1y3EroPtjtNi6NiSUREbFG9ezfZKTOp2bOHbnfeSeffXdl2PvgYU79F7eYl9cMe\nB1xodyIRaYPcHsOqHfmkOV189v1+6jyGoT06k5TgYMKg7gT668OziDGGb3YVMDs9k693FtAl0I9p\nZ/biqtN6EBTga3c8aS0qC2H2sPrd4aYvBy+tfvspFUsiItLsSleuJPf2O7B8fIh++mkCRwy3O1Lj\nWvkorHykfve3M2+zO42ItDHZhRUsyshmUYaL3OIqugT6MfHUaJISHMRFBNkdT6TFWpd1iFnpmazc\nnk9wgA9Xn9GLa87oRUhHFUxyFL5bXH/icPzjMPx6u9O0KCqWRESk2RhjKJj3L/KffRb/Af1xzJqF\nb3S03bEa149vOk65Ai6eA21lFZaI2KqmzsPnW/eT6nSxakc+AGf1DSc5wcE5A7ppOLFIA2zKLmJ2\neiaffr+fTv4+/O60Hkw/sxdhndrI5fjSNIyB1yeCa239IO+QNvYe9jioWBIRkWbhKS8n9y/3ULps\nGcETJtD9wX/g1aGD3bEal8sJr0yAmHj43bvgoyG5InJ8Mg+UkuZ0sWR9DofKa4gKCWByvIPJ8THE\ndO5odzyRVm3rvhJmr8jko+/2EeDjzRXDY7luZG8iggPsjiYt1aHdMHcE9B1bP+5AABVLIiLSDGr2\n7iV7RgrVO3cS8ec/0+XqP7SdeUo/KtpbvwOcX6f6a+8Dw+xOJCKtVEVNHUs37WOh00VGViE+XhZj\nT+xGUoKDs/qG4+3Vxl4/RWyWeaCMuSsyeW9jLt5eFskJDq4/uw/RoW3sBJg0jlVPwfL7Ifkt6H++\n3WlaBBVLIiLSpMq++oqcP/4JgOgnn6TTmWfYnKgJVJXAgnFQnAPTP4fwfnYnEpFWxhjDpuxiUp0u\nPtiYS1l1Hb3DA0lOcHDZqTF01SU6Ik0uq6Cc51fuZMn6bAAmnhrDTaPiiA3T6kD5CXctzBtZ//5v\nxhrw72R3ItupWBIRkSZhjOHQgpc58OST+MfFETN7Fn6xsXbHanweN7yVDJnL4col0Ge03YlEpBUp\nqqjh3Q05pDpdbMsrJcDXiwmDokge5iC+R+e2t7pTpBXIKapk3hc7SXW6cHsMFw+O4qbRccRFqECQ\nw/augQXnwmkpMO4hu9PYTsWSiIg0Ok9lJfv++jdKPvyQoHHjiHr4IbwCA+2O1TQ+uRtWz4UJT0HC\nNLvTiEgr4PEYVu8uIM3p4uPNedTUeRgUHUJSgoOLTokiWFugi7QI+0uqePE/u3hjzV6q6tycP6g7\nMxPj6B8ZbHc0aQk+uBXW/xuuWwndB9udxlYqlkREpFHV5uTgSplJ9bZthN96K2HXXdt2z7g7X4IP\n/wgjboLzHrE7jYi0cAdKqli0LpuFGS6yCioICvDh0iHRTIl3MDA6xO54IvILCsqqmf/lbl79eg/l\nNW7OPbEbMxP7MihG/922a5WFMHtY/e5w05eDl7fdiWyjYklERBpN+eo15Nx2G6aujuh/PkGns8+2\nO1LT2bmifsvZuHNg6lvt+s2EiPyyOreHldvzSXW6WLH9AG6PYXivLiQPczB+YHcCfPXaIdJaFFXU\n8PJXe3j5q92UVNUx6oRwZib2ZWiPznZHE7t8txiWTIPxj8Pw6+1OYxsVSyIictyMMRS+9hr7H3sc\nv549iZk9C/9eveyO1XTyf4D550BIDExbBv5BdicSkRYmq6CchRkuFmVkc6C0mq6d/Jk0NIakBAe9\nurbRS4NF2onSqlpe/SaLl77czaHyGk7vE8bMxL6M6N2l7a7SliMzpv5Eo2tt/SDvkGi7E9lCxZKI\niBwXT1UVeffeR/F779FpzBiiHnsU705teLhleQHMHwM1ZXBtOoS2wYHkInJMqmrdLNuSR5rTxdc7\nC/CyYPQJEUxJcJDYPwJfby+7I4pII6qoqePNNXuZ959d5JdWk9CzMymJfRnZt6sKpvbk0G6YOwL6\njoWk1+1OYwsVSyIicsxq9+0je+bNVG3eTNeUFLredCOWVxv+4FRXDa9eAjnr4A8fgiPB7kQi0gJs\n3VdCmtPFOxtyKK6sxdGlA0nxDiYNdRAZEmB3PBFpYlW1btKcLl74Yif7iqsYHBNCSmJfzhkQoYKp\nvVj1FCy/H5Lfgv7n252m2alYEhGRY1Kxbh3ZN9+Cqawk6onHCRozxu5ITcsYePcm2PgmTHwJBk2y\nO5GI2Kisuo4PNuaS6nSx0VWEn7cX4wZGkpzg4LTeYXh56cOkSHtTU+dhyfps5q7MxHWokgHdg0kZ\nHcf4gZF6TWjr3LUwbyRUldRfEuffhlfvH4GKJRERaRBjDEWpqeQ99DB+0dHEzJmNf1yc3bGa3pdP\nw+f3wai7YdRddqcRERsYY1i/t5A0p4ulm/ZRUeOmX7dOJCfEcumQaDoH+tkdUURagFq3h/e/zWXO\nikx2HSwnLqITKaPjuODk7vjokti2a+8aWHAunJYC4x6yO02zUrEkIiJHzVNTw/5//IOiRYsJPHsk\n0U88gXdwsN2xmt7WDyDtShg4CSbOBy1rF2lXCsqqeWdDDqlOF5kHyujo581Fg6NISnBwiiNUl7qI\nyBG5PYaPvtvH7PRMtu8vpWdYR24aFcclQ6Lx81HB1CZ9cCus/zdctxK6D7Y7TbNRsSQiIkeldv8B\ncm6+mcqNGwm74XrCZ87E8m4H22Tnfgsvj4duJ8Hvl4Kv5qWItAcej+HLzIOkOV18+n0etW7DkNhQ\nkhMcTDg5ik7+PnZHFJFWwuMxfPr9fmav2MHmnBKiQztww6g+TB4aQ4BvO3gv1Z5UFsLsYfU7B0//\nHLzax79fFUsiIvKbKr/9luyZN+MuLyfq4YcJPm+c3ZGaR0kuvJgIXj71O8B1irA7kYg0sdyiShZl\nZLMww0VOUSWhHX25bEgMSQkOTogMsjueiLRixhhWbs/nufQdbNhbRLdgf64b2YfLh8XSwa99FBDt\nwneLYck0GP8EDL/O7jTNQsWSiIj8qqLFi8m7/wF8unUjZs4cAk7oZ3ek5lFTXr9SqWAnTPu0fsWS\niLRJNXUe0rftJ9Xp4osf8jEGzurblSnxDs49qRv+PvrAJyKNxxjD1zsLeG75DtbsPkRYoB/Tz+rN\n707rodWQbYEx8PpEcK2FlLUQHGV3oianYklERI7I1NSw/9FHKXzzLQJPP53op57EOzTU7ljNw+OB\nRVfBtg9hair0aycrtETamZ35ZSx0uliyPpuDZTVEBgcwJT6GyfEOHF062h1PRNqBtbsPMSt9B6t2\nHCS0oy/XnNGL35/ek5AOvnZHk+NxaDfMHQF9z4Wk1+xO0+RULImIyP+oO3iQ7FtvpTJjHV2mXUPE\nbbdh+bSjM2if3w9fPgXnPQojbrQ7jYg0osoaNx99t480p4u1ew7h42UxZkAEyQmxjOwXjre2BBcR\nG3zrKmJ2+g4+33qAIH8ffn96T645sxddtNtk67XqSVj+QP1JyhPG252mSalYEhGR/0/ld5vJnjkT\nd1ER3R98kJALJtgdqXl9+ya8eyPEXwMTntIOcCJtxOacYlKde3lvQy6l1XX06hpIUoKDy06NJiJI\nQ/lFpGXYklvMnBWZfLw5jw6+3lw5ogfTz+ql16nWqK4G5o2EmjK4aTX4d7I7UZNRsSQiIv+n6N13\nyfv7vXh3DcMxezYBJ55od6TmlfU1/Psi6HkGXLEYvLUMXaQ1K66s5f1vc0h1utiSW4K/jxcTBnUn\nLfXq1wAAIABJREFUKcHBsF5dsFQci0gLtWN/KXNWZPL+xlx8vb2YOiyW68/uTfeQDnZHk4bYuxoW\njIPTUmDcQ3anaTIqlkREBFNby/4nnqDw1dfoOGwY0c88jU+XLnbHal6HdsGLYyCwK0z7DDq0k3lS\nIm2MMYY1uw+x0Oniw+/2UV3n4cTuwUwd5uCiU6I1t0REWpXdB8t5fmUmb6/PwbJg0lAHN43qozlw\nrckHt8D61+C6FdB9sN1pmoSKJRGRdq6usJCcW2+jYs0aOl/1O7rdfjuWbzv74FVZBC+NhfJ8mL4c\nwvrYnUhEGuhAaRVL1uWwMMPF7oPlBPn7cPGQKJITYhkYHWJ3PBGR4+I6VMELX+xkUUY2bmO4dEg0\nN43qQ+/wtnt5VZtRWQizEyDEAdM/B6+2t9OoiiURkXasautWsmekUHfwIJH330/opZfYHan5uWvh\njcmw50u46l3oeabdiUTkKNW5PfxnRz6pa12kbztAnccwrGcXkhIcnD+oOx382t6bdxFp3/KKq5j3\nn528uWYvtW4PF5wcRUpiHP26BdkdTX7Nd4thyTQY/wQMv87uNI1OxZKISDtV/OGH7Lvnr3iHhBAz\nexYdBg2yO1LzMwY+/CNkLICL58CQK+1OJCJHwXWogoUZLhZlZJNXUkXXTn5MPDWGKQkO+ujsvYi0\nA/ml1cz/chevfZNFRY2b806KJCUxTis0Wypj4PXLwOWElLUQHGV3okalYklEpJ0xbjf5Tz9NwfyX\n6DB0KDHPPoNP1652x7LH6hfgkzvhjFth7P12pxGRX1Fd5+bTLftJc7r4MvMglgVn9wsnOcFBYv9u\n+Pl42R1RRKTZFZbXsOCr3bzy1R5Kq+sY0z+ClMQ4hsR2tjua/NyhXTD3NOh7LiS9ZneaRqViSUSk\nHXEXFZHzpz9T/tVXhE5NJvLuu7H8/OyOZY8fPoW3kuCE82HKa+ClD6UiLdH2vFLSnC7e2ZBNYUUt\n0aEdmBLvYHJ8DFGh2h1JRATqd8F89es9vPTVbooqajmrb1dSRscxvHeY3dHkp1Y9CcsfgKmpcMJ4\nu9M0GhVLIiLtRNX2H8hOSaE2L4/Iv/+NzpMn2x3JPvu3wEvjoEsvuOYT8Au0O5GI/ER5dR1LN+WS\n6nSxYW8Rvt4W554USXKCgzP6dMXLy7I7oohIi1ReXcfrq7N4cdUuDpbVMKxXF25O7MsZcWFYll47\nbVdXA/NGQk0Z3LQa/NvG5dsqlkRE2oGSZZ+Se/fdeAcGEv3cs3QcMsTuSPYpOwAvjgFPLVyb3uau\ncRdprYwxfOsqIs3p4oONuZTXuImL6ERygoNLh0QT1snf7ogiIq1GZY2bVOde5n2xi7ySKk5xhHLz\nmDhGnxChgslue1fDgnFwWgqMe8juNI1CxZKISBtmPB7yn3uOghfmETD4ZGKem4Vvtwi7Y9mntgr+\nfQHkbYZrPoaodlywibQQheU1vLMhhzSni+37S+ng682Fg7uTlBDLqbGh+gAkInIcquvcLF6XzdwV\nO8kpquSkqGBmJsZx7omRWv1ppw9ugfWvwXUroPtgu9Mct18rlnyaO4yIiDQed0kJubffQdkXXxAy\n8TIi770Xr/Y6Twnqd+N4bwZkO+tnKqlUErGNx2P4ZlcBqU4XyzbnUeP2MNgRyiOXDeKCk7sTFOBr\nd0QRkTbB38ebK4b3YEq8g3c25DB3RSY3vL6eft06MWN0HBecHIW3Cqbmd859kPUNlOS2iWLp12jF\nkohIK1W9cyfZM1Koyc6m21/upvPUqTrrv/IxWPkwjLkXzvqj3WlE2qW84ioWr3ORluHCdaiSkA6+\nXDokmqQEBwO6B9sdT0Skzatze/jwu33MTs9kx4EyenUN5KZRfbhkSDS+3trIpFl5PG1m8xhdCici\n0saUpqeTe/sdWAEBxDz7DB3jj/ga3758txiWTIPBl8Mlc6G9l2wizajW7WHFtgOkOl2s3H4Aj4HT\n+4SRlOBg3EmRBPh62x1RRKTd8XgMy7bkMSs9k+/3lRDTuQM3jurDpKEx+PvodVkaRsWSiEgbYTwe\nDj7/PAdnzSbgpJOImT0L3+7d7Y5lP5cTXpkA0UPhqnfBRwOARZrD7oPlpDldLFmfTX5pNRFB/kyO\nj2FKvIMeYdqJUUSkJTDGkL7tAM+lZ7LRVUT3kACuH9mb5GGxKv7lqKlYEhFpA9xlZeTedRdlny8n\n5OKLiLz/frwCAuyOZb+ivfBiIvgFwvR0CAyzO5FIm1ZV6+bjzftIXetize5DeHtZjD4hguQEB6NO\nCMdHl1mIiLRIxhi+zDzIrOWZrN1ziK6d/LluZC+uGN6DQH+NX5Zfp2JJRKSVq969m+yUmdTs2UO3\nO++g8+9+p3lKANWl8NI4KM6G6Z9B+Al2JxJps7bkFpPmdPHOhhxKq+roEdaRKfEOJg2NoVuwSm4R\nkdZk9a4CZqdn8mXmQTp39GXamb246vSeBGtjBfkF2hVORKQVK/viC3L+fDuWtzexL80ncMQIuyO1\nDB43LJ4G+dvgysUqlUSaQElVLe9/m0ua08V3OcX4+Xhx/sBIkhJiGd6ri7axFhFppUb0DmNE7zDW\nZRUyZ0Um//z0B+b9ZxdXn96Ta87sRWjHdrzLsDSYViyJiLRQxhgKXpxP/tNP43/CCcTMno1fTLTd\nsVqOT/4Cq+fAhKcgYZrdaUTaDGMMGVmFpK518eF3uVTVeugfGcTUYbFccko0IR11NltEpK3ZnFPM\nrPQdLNuyn0A/b648rQfXntWbrp00t1Lq6VI4EZFWxlNRQe5f7qH0k08IPv98uj/0IF4dOtgdq+XI\nWABLb4PhN8L4R+1OI9ImHCyr5u312aQ6XezKL6eTvw8XnRJFcoKDQdEhuvxWRKQd2J5XyuwVmSzd\nlIu/jxeXD+vBdSN7ExmiS57bOxVLIiKtSI3LRfaMFKozM4n40x/pcs01+kD3UztXwOsTIW4MTE0F\nL+1mInKs3B7Dqh35pDldfPb9fuo8hvgenUlKcDDh5O509NPUBBGR9mhnfhlzV+zk3W9z8LYspiTE\ncMPZfYjp3NHuaGITW4sly7LOA54FvIH5xphHf/b7kcAzwMlAsjFm8U9+93vgr4d/fNAY8+9fO5aK\nJRFp7cq++oqcP/4JjCH6ySfpdNaZdkdqWfJ/gPnnQEg0XLMMAoLtTiTSKmUXVrAoI5tFGS5yi6vo\nEujHxFOjSUpwEBcRZHc8ERFpIfYWVPD8F5ksXpeNMXDZqdHcNCqOnl0D7Y4mzcy2YsmyLG/gB2As\nkA04ganGmO9/cp+eQDDwZ+D9H4sly7K6ABlAPGCAdcBQY0zhLx1PxZKItFbGGA69/AoH/vlP/Pv0\nIWbObPxiY+2O1bJUHIIXE6GmDKYvh8497E4k0qrU1Hn4fOt+Up0uVu3IB+CsvuEkJzg4Z0A3/Hy8\nbE4oIiItVW5RJfO+2MlbThd1bg8XDY4iJTFOJyPaETt3hRsGZBpjdh0OkgpcDPxfsWSM2XP4d56f\nPXYc8Jkx5tDh338GnAe81cSZRUSaVdXWrRx8YR6ly5YRNHYsUY8+glegzgL9f+pqIO1KKMmFPyxV\nqSTSAJkHSklzuliyPodD5TVEhQRwc2JfJsfH6JIGERE5KlGhHbj/4oHMGB3Hi6t28frqvby3MZfz\nB3Znxug4TozSKvL2rKmLpWjA9ZOfs4Hhx/HY/9kOybKs64DrAGJ1dl9EWgl3SQklH35I0aLFVH3/\nPZafH+G33kLY9ddrntLPGVM/qDvrK5j4EjiG2Z1IpMWrqKlj6aZ9LHS6yMgqxMfLYuyJ3UhKcHBW\n33C8vfQ6IyIiDRcRHMA9E07khrP7sOCr3fz76yw+/G4f5wzoxszEOAY7Qu2OKDZo9RMZjTH/Av4F\n9ZfC2RxHROQXGWOozMigaPFiSpZ9iqmqwv+EE+h2zz2EXHgB3qH6Q3xEXz0L374OZ98FgybZnUak\nxTLGsCm7mFSniw825lJWXUef8EDuOX8Al54arS2jRUSk0YR18uf2cf257qw+vPL1HhZ8tZuL53zF\nyH7h3JwYR3zPLnZHlGbU1MVSDuD4yc8xh2872seO+tljVzZKKhGRZlSXn0/Ru+9SvHgJNVlZeAUG\nEnLxxYROmkTAwJO0QunXbP0APr8PBk6EUXfZnUakRSqqqOHdDTmkOl1syyslwNeLC06OIjnBwdAe\nnfUaIyIiTSakoy+3nNOXa87syWurs5i/ajeTXviGEb27cHNiX07rE6a/Q+1AUw/v9qF+ePcY6osi\nJ3C5MWbLEe77CrD0Z8O71wGnHr7LeuqHdx/6peNpeLeItBSmro6yVasoWryEspUrwe2mw9ChhE6a\nRPC4c/HqqLkmvyn3W3h5PEScWD9XybeD3YlEWgyPx7B6dwFpThcfb86jps7DyTEhJCU4uHBwFMEB\nvnZHFBGRdqiipo431+zlX//ZxYHSaob26ExKYhyj+oWrYGrlbNsV7vDBzweeAbyBBcaYhyzLegDI\nMMa8b1lWAvAO0BmoAvKMMScdfuw1wF8OP9VDxpiXf+1YKpZExG41e/dStORtit95h7oDB/AOCyPk\nkosJnTgR/9697Y7XepTk1u8A5+VTvwNcUDe7E4m0CAdKqli0LpuFGS6yCioIDvDh0iHRTElwcFJU\niN3xREREAKiqdbMow8XzK3eSW1zFoOgQUhLjGDugG16a89cq2VosNScVSyJiB091NaWffkbRkiVU\nrF4NXl4EnnUmoZMmETRqFJavVg40SE15/Uqlgp1wzTKIHGh3IhFb1bk9rNyeT6rTxYrtB3B7DCN6\ndyE5IZbzBkYS4Ottd0QREZEjqqnz8M6GbOas2MneQxX0jwwiJTGO8QO7ayOJVkbFkohIE6jato2i\nRYspXroUT3ExvtHRhE6aSMill+IbGWl3vNbJ44FFV8G2D2FqKvQbZ3ciEdtkFZSzMMPFooxsDpRW\nEx7kz6ShMUyJd9Cra6Dd8URERI5andvDB5tymZ2eyc78cvqEBzJjdBwXDY7Cx9vL7nhyFFQsiYg0\nEndpKSUffkjR4iVUbd6M5etL0NixhE6eRMfhw7G89IfxuHx+P3z5FIx7BE67ye40Is2uqtbNsi15\npDldfL2zAC8LRp8QQVKCg9H9I/DVm28REWnF3B7DJ5vzmJW+g215pcR26chNo/pw2akx+Pnob1xL\npmJJROQ4GGOoXLeOokWLKVm2DFNVhX+/fvWDuC+8AJ/One2O2DZ8+ya8eyMMvRoueBo04FHaka37\nSkhzunhnQw7FlbU4unQgKd7BpKEOIkMC7I4nIiLSqDwew+db9zMrPZPvcoqJCgnghlF9mBLv0CXe\nLZSKJRGRY1B38CDF775L0eIl1OzZg1dgIMETJhA6eRIBAwdqZ4vGlPU1/Psi6HE6XLkEvDWXStq+\nsuo6PtiYS6rTxUZXEX7eXowbGElygoPTeodpuKmIiLR5xhi++CGfWemZrMsqJDzIn+tH9uby4bF0\n9POxO578hIolEZGjZOrqKPvyS4qXLKF0xUqoq6PDqafWr046bxz/j737Do+rOtA//p4paiNpRpYl\nW+4VNzqm914MMSARIAUSQjrZzSa7m84mBPJLskk2BVJI7xBLNsUGjMHG9GI6uNsY3Ktm1DXt/P6Y\nkTwjjWRZSLoj6ft5nnk0c+8dzREXSaPX57zXVVDg9BCHngObpd+eLxWUSjcvk/KZAYahrbE1ql8+\nsVF/fGaLmsIxzRhVpOtOGq8rjx2rEl+O08MDAGDAWWv13Kb9+sXyjXpu836N8OXoE2dM1g2nTlRR\nHv/gmA0IlgDgEMLbtilYU6PQwkWK7t4t94gR8l95pQJVlcqdMsXp4Q1dzUHp9xdJjXukmx+XSqc6\nPSKg38TjVjWvbNMPl67T3vpWfeCYMbrpjMk6ZpyfGZAAACSt2nJAv1i+USvX75U/36uPnz5JHz9t\nsvwFBExOIlgCgAzira2qX/aYgjXVanrueckY+c48Q4HKKhWde45MDjMH+lUsKv29StrytHTDfdKk\nM5weEdBvXtpyQLc9uFpvbg/puAkB3Xr5bB03gdl5AAB05fWtQd25YqOWrd6twlyPbjh1oj5xxmSV\nFuY6PbRhiWAJAFK0rFunYHWNQg88oHgoJO+YMfJXVSpw1VXyVlQ4PbzhwVppyZelVb+X5t8lHfcR\np0cE9IutB5r0/UfWaskbO1Xhz9NXL52pDxwzhhlKAAD00OoddbprxUY99NZO5Xnc+vDJE/Sps6ao\nvJiLWwwkgiUAw16soUF1i5coWFOjljfflPF6VXThBfJXVsp36qkyLi5vOqBe+I308H9Lp39RuvA7\nTo8G6HONrVH96olNuvupzXIZ6TNnT9Wnz5qq/ByudAMAQG9s3FOvu1Zs0v2vbZfH7dJ1J47XZ86e\nqjGBfKeHNiwQLAEYlqy1an71VQUXVKvukUdkm5uVO326AtdUqfiKK+QpYRmKIzYsk/7xQWnGZdIH\n/yoR6mEIicetFr66XT98ZK321LfqymPH6CuXzlSFnze9AAD0hS37GvWrJzap5pVtMkaqPH6cPnfO\nNE0o5SI7/YlgCcCwEt2/X6H77lewulrhd96Rq6BAxfPmKVBVqbyjj2YJipN2r06UdY+YLN30iJTj\nc3pEQJ9J7VE6dnxAt14xW8fTowQAQL/YVtuk36zcrHtf2qqYtZp/7Bh9/txpmlpW6PTQhiSCJQBD\nno3F1PjMMwouqFb9ihVSNKr8445ToKpKxZdcLJePAMNxDXul354nxSPSJ5dLxWOcHhHQJ7bVNun7\nD6/V4jd2anTxwR4ll4sQGwCA/ra7rkV3P7lZf3/hXbVG45p3VIVuOW+aZo4udnpoQwrBEoAhK7xt\nm0ILFyq4cJGiu3bJXVIi/5VXKlBVqdypXLo+a0RapD9fIe16U7rpYWnMcU6PCHjfGluj+vXKTbr7\nyc0yRvr0WVP16bOnqCDH4/TQAAAYdvY1tOp3T72jvz63RY3hmC6aPUpfOG+6jhrnd3poQwLBEoAh\nJR4Oq+GxxxSsrlbjs89Jxsh3xhkKVFWp6NxzZHJynB4iUlkrLfyk9OaCRKfS7A84PSLgfYnHrRa9\nul0/XLpWu+taNf/YMfrKJTMpDwUAIAsEm8L6wzNb9Mdn3lF9S1TnzijTLedN1wkTWZ7+fhAsARgS\nWtatV7CmWnX3P6BYKCTPmAoFKisVuOoqecewrCprrfyhtOIO6fz/kc78ktOjAd6XVVsO6LbFq/XG\ntpCOGR/QrZfP5o0qAABZqK4lor8+965+99Rm1TZFdPq0Ut1y7nSdMmUEnau9QLAEYNCKNTSo7qGH\nFKyuUcsbb0her4ouOF+Byir5Tj1Fxs2lu7PaWzVS9U3SMR+SrvylxC9xDFLbg836/sNr9eDrOzS6\nOE9fuXSG5h8zlh4lAACyXGNrVP944T395snN2tfQqhMnlegL503XmdNHEjAdBoIlAIOKtVbNr76m\nYHW16h5+WLa5WbnTp8lfWSn//PnylDA7YFDYtkr60zxpzPHSDfdJnlynRwQctsbWqH6zcpN+8+Rm\nSdKnz56qz9CjBADAoNMSiemeF9/Tr1du1q66Fh0zPqAvnDtN588qJ2DqAYIlAINCdP9+he5/QMHq\naoU3b5YpKJB/3mUKVFYq75hj+IE/mAS3Jq4Al1Mg3bxc8pU6PSLgsGTqUfrvS2ZqLD1KAAAMaq3R\nmGpe3q5fPrFR22qbNauiWF84b5oumTOamcjdIFgCkLVsLKbGZ59VcEG16leskCIR5R97rAJVlSq6\n5FK5C31ODxGHq7Ve+sMliXDp5mVS2QynRwQclpffPaDbHlyt1+lRAgBgyIrE4rr/tR365YqN2ryv\nUdPKC3XLudN0+dEV8rhdTg8v6xAsAcg64W3bFVq4UMFFixTduVPukhL5589XoKpSudOmOT089FY8\nJt3zIWnDMunDC6Rp5zs9IqDHtgeb9YOH1+qB13doVHGuvnLJTF15LD1KAAAMZbG41ZI3d+rO5Ru0\nfneDJpUW6HPnTNNVx4+Vl4CpHcESgKwQD4fV8PjjCi6oVuNzz0mSfKefrkBVpQrPO0+unByHR4j3\nbek3pOfulOb9WDrxZqdHA/RIUziqXz9BjxIAAMNZPG716Opd+sXyjXp7R53GBvL12XOm6pq545Tr\n4YJBBEsAHNWyfr1CNTUK3f+AYsGgPGMqFLi6UoGrrpR37Finh4e+suqP0uIvSid/Rrr0B06PBjik\neNzqvte26wePJHqUPnDMGH3lUnqUAAAYzqy1WrFuj37++Ea9tjWoUcW5+vRZU3X9SROUnzN8AyaC\nJQADLtbQqLqHH1Kwulotr78heb0qOv98BSor5TvtVBn38P2hPCRtfkL6W6U05Vzp+nskNzM9kN1e\nfrdWty1erde3BnXMOL9uvWK2Tpg4wulhAQCALGGt1TMb9+vnyzfoxXcOaGRhjm4+c4o+cspEFeYO\nv/e6BEsABoS1Vs2vvaZgdbXqHn5EtqlJOdOmKlBZJf/8D8gzgj/ahqR9G6TfnS8VjZE+8aiUV+z0\niIAu7Qg26/v0KAEAgMPwwub9unPFRj21YZ8CBV7ddPpk3XjaJPnzvU4PbcAQLAHoV9EDBxS6/wEF\nq6sV3rRJpqBAxZddqkBlpfKPPVbG8AfbkNV0IBEqtdRJn1wulUx0ekRARk3hqH69crPufnKTrJU+\nfdYUffrsqfINw39xBAAAvfPqe7W6c/lGPb52j4pyPbrxtEm66YzJGuEb+l2xBEsA+pyNxdT47HMK\nVlerfvlyKRJR/jHHyF9VqeJLL5O70Of0ENHfomHpr1dJ216SbnxQmnCy0yMCOonHre5/fbt+8PA6\n7apr0RXHjNFXLpmhcSUFTg8NAAAMUm9tD+muFRv18Fu7VJDj1kdOmaibz5ys8qI8p4fWbwiWAPSZ\nyPbtCi5cpODChYru3Cl3ICD//PkKVFUqd/p0p4eHgWKt9MAt0qt/k67+nXT0NU6PCOjklfdqdduD\nq/Xa1qCOHufXrZfP1txJLMkFAAB9Y/3uet21YqMefH2HvG6Xrj9pgj599hRV+IfehUAIlgC8L/Fw\nWA3Llyu4oFqNzz4rSfKddpoCVZUqPP98uXKG/tRPdPDMz6Rlt0pnf0U69+tOjwZIsyPYrB88slb3\nv7ZD5UW5+u9LZurq4+hRAgAA/WPz3gb96olNWvTqdrmMUdXccfrs2VM1fsTQmSFNsASgV1o3bFCw\nukahBx5QrLZWnooKBa6+WoGrr5J37FinhwenrFks3fsRac5VUtUfJDq0kCWawzH9euUm/SbZo/Sp\ns6boM/QoAQCAAbL1QJN+tXKTqldtU9xaXXncWN1y7jRNGjn4a0K6C5Z4pwUgTbyxUXUPP6xgdY2a\nX3tN8npVdN55ClRVynfaaTJut9NDhJN2vi4t/KQ09njpyl8SKiErxONWD7y+Qz94ZK12hlp0+dEV\n+uqlM+lRAgAAA2r8iAJ976qj9IXzpuk3Kzfrny++pzOmjRwSwVJ3mLEEQNZatbz+umqrq1X/0MOK\nNzUpZ+pUBaqq5J//AXlG0EkCSXU7pd+eJxlX4gpwRaOcHhGgV9+r1XeSPUpHjfXr1itm60R6lAAA\nQBbYW9+qkgKvPG6X00N535ixBCCjaG2tQvffr1BNjVo3bJTJz1fxZZcqUFml/OOOlWE2CtqEm6R/\nXie11kk3LSVUguN2hpr1w0fWadGr21VelKsfXXMMPUoAACCrlBXlOj2EAUGwBAwzNh5X47PPKVhd\nrfrHH5ciEeUdc7RG3/YdFV92mdyFhU4PEdkmHpcWfTqxDO76e6TRRzo9IgxjzeGYfvPkJv165SbF\nrXTLudP02XPoUQIAAHAK78KAYSKyY4eCCxcptHChIjt2yO33q+T66xSorFLejCOcHh6y2YrbpTUP\nSBd/T5pxidOjwTBlbaJH6fsPJ3qU5h1doa9eMnNIXW0FAABgMCJYAoYwGw6rfvkKBWtq1Pj005K1\n8p12msr/88sqvOACuXJynB4ist1r/5Se+rF0wsekUz7n9GgwTL36Xq1uW7xar76X6FH6+fXH0aME\nAACQJQiWgCGoddMmBatrFLr/fsUOHJBn9GiN/Oxn5L/6auWMG+f08DBYvPus9MAXpMlnSZf9iCvA\nYcCl9iiVFeXqf6uOVuXx4+hRAgAAyCIES8AQEW9sVN0jjyhYXaPmV1+VPB4VnXeeAlWV8p1+uozb\n7fQQMZgc2Czd82GpZKL0wb9Ibq/TI8Iw0hyO6e4nN+vXKzcpZq0+f+5UffacaSqkRwkAACDr8A4N\nGMSstWp54w0Fq2tUt2SJ4k1NypkyReX/9V/yXzlfntJSp4eIwag5KP3jOklW+tC/pPwSp0eEYaKt\nR+kHD6/VjlCL5h1Voa9eSo8SAABANiNYAgahaG2t6h54QMHqGrVu2CCTn6/iSy9VoKpS+ccdJ8OS\nJfRWLCot+FhixtIN90mlU50eEYaJ17YGdduDb+uV94I6cmyxfnrdcTppMj1KAAAA2Y5gCRgkbDyu\nxueeU6imRvXLHpONRJR39NEa/Z3vqHjeZXIXFjo9RAx21koP/7e0eYU0/y5p0hlOjwjDwK5Qi374\nyFotTPYo/bDqaFXRowQAADBoECwBWS6yc6eCixYpVLNQke3b5fb7FbjuOgWqKpU3Y4bTw8NQ8uLd\n0qrfS6f/u3TcR5weDYa45nBMv31qs371RKJH6XPnTNXnzqVHCQAAYLDh3RuQhWw4rPonnlCwulqN\nTz8jxeMqOPUUlX3pP1R0wQVy5eY6PUQMNRuWSY98VZp5uXT+t50eDYYwa60efGOnvv/QGu0Iteiy\no0bra5fOokcJAABgkCJYArJI6+bNClbXKHTffYodOCDPqFEq/fSnFLj6auWMH+/08DBU7V4tLfi4\nNOpI6eq7JZfL6RFhiHp9a1C3LV6tl9+t1Zwxxfq/a4/VyVO4yAAAAMBgRrAEOCze1KS6R5a7vr+x\nAAAgAElEQVQqWF2t5ldekTweFZ17jgJVVfKdcYaM2+30EDGUNeyV/nGtlOOTrr8n8RHoY7tCLfrh\n0rVa+Mp2jSzM1Q8rj1blCePkpkcJAABg0CNYAhxgrVXLm28qWF2juiVLFG9sVM7kySr/r/+Uf/58\neUaOdHqIGA4iLdI9H5Ia90off0jyj3V6RBhiWiIx3f1kskcpbvXZc6bq8/QoAQAADCm8swMGULS2\nVnUPLlawulqt69fL5OWp+JJLFLimSvnHHy9j+Nd7DBBrpQdukba9KH3wL9LY450eEYYQa60Wv7FT\n3394rbYHm3XpkaP19cvoUQIAABiKCJaAfmbjcTW98IKCC6pVv2yZbCSivKOO0uhvf1vF8y6Tu6jI\n6SFiOHryR9KbC6Tzb5Vmz3d6NBhCUnuUZlcU68cfPEan0KMEAAAwZBEsAf0ksmuXQosWKVizUJFt\n2+Ty+xW49loFqiqVN3Om08PDcPbWQmnF7dIx10tnfMnp0WCI2F3Xoh8+sk41r2zTyMIc/aDyKFWd\nMJ4eJQAAgCGOYAnoQzYSUf0TTyhYXa3Gp56W4nEVnHKKyr74RRVdeIFcublODxHD3baXpfs+K004\nVbriZxLLL/E+tURi+t1Tm/XLJzYpGrP6zNlT9flzp6ooz+v00AAAADAACJaAPtC6+R0Fa6oVuu9+\nxfbvl6e8XKWf+qQClZXKGT/e6eEBCcGt0j+vk4pGS9f+XfIQdKL3MvUofe3SWZpQSo8SAADAcEKw\nBPRSvKlJdUsfVbC6Ws0vvyx5PCo852wFqqpUeMYZMh6+vZBFWusToVK0VfrYYslH5w16741tQd32\n4GqterdWsyqK9aNrjtGpU/l/CgAAYDjiL1/gMFhr1fLW2wpWV6tu8WLFGxuVM3Giyv/zy/LPny9P\nWZnTQwQ6i8ekmk9Ke9ZIH14glc1wekQYpHbXteh/l65T9cuJHqXvX32UrplLjxIAAMBwRrAE9EAs\nGFTowcUKVlerdd06mbw8FV98sQLXVCn/hBNk6KlBNlt2q7T+YWnej6Vp5zs9GgxCLZGYfv/0O7pr\nxUZFY1afPnuKbjl3Gj1KAAAAIFgCumLjcTW9+KKCC6pVv2yZbDisvDlzNPrb/6PiefPkLipyeojA\nob38J+m5O6WTPyOdeLPTo8EgY63Vkjd36v89lOhRumTOaH3tspmaWOpzemgAAADIEgRLQAeR3bsV\nWrRIwZqFimzdKldxsQLXXKNAVaXyZs1yenhAz21eKS35sjTtQumiO5weDQaZN7eFdNvit/XSlkSP\n0v9ec7ROmzrS6WEBAAAgyxAsAZJsJKKGlSsVXFCthqeekuJxFZx8ssr+7d9UdOEFcuXlOT1E4PDs\n2yj966NS6XSp6g+Smx/36Jk9bT1Kr2zTiIIc/b+rj9IH6VECAABAF/hLA8Na6zvvKFRTo+B99yu2\nb5885eUq/eQnFai8WjkTJjg9PKB3mg5I/7hGcnmlD90r5RU7PSIMAh17lD511hR9/txpKqZHCQAA\nAN0gWMKwE29uVt3SpQpWV6t51cuS263Cc85RoKpShWeeKePh2wKDWDQs/esGKbRduvFBqWSi0yNC\nlrPW6qE3d+l7D63R9mCzLp4zSl+/bBY9SgAAAOgR/oLGsGCtVcvbqxWsXqC6xUsUb2iQd+IElX35\nS/LPny9vebnTQwTeP2ulJf8hbXlKuvp30oSTnR4Rstxb20O67cHVenHLAc0cXaR/3HyyTptGjxIA\nAAB6jmAJQ1osFFLowcUK1tSodc0amdxcFV9ysQJVVcqfO1fG0BmCIeTZX0iv/k06+yvS0dc4PRpk\nsT31LfrfR+hRAgAAwPtHsIQhx8bjanrxJQVralS/dKlsOKy82bM1+n9uVfG8eXIX0zeDIWjtEmnZ\nrdKcq6Vzvub0aJCl2nqUfrlio8KxuD515hR9/jx6lAAAANB7BEsYMiK79yi0aJGCCxcq8t57chUV\nKVBVpUBVpfJmz3Z6eED/2fm6VHOzNPZ46cpfSszEQwfWWj38VqJHaVttsy6anehRmjSSHiUAAAC8\nPwRLGNRsJKKGJ59UsLpGDStXSvG4Ck46SWVfuEVFF14oV16e00ME+lfdTukf10n5I6Tr/il5850e\nEbLMW9tDum3xar34Dj1KAAAA6HsESxiUwlu2KFhTo+B99ym2d588ZWUqvflmBSqvVs5EroKFYSLc\nJN1zvdQSkj6xVCoa5fSIkEX21LfoR0vXacHLiR6l7111lK49kR4lAAAA9C2CJQwa8eZm1T/6qILV\nNWp66SXJ7Vbh2WcrUFWlwrPOlPHwvzOGkXhcuu8z0o7XpOv/KY0+yukRIUu0RGL6wzPv6K7liR6l\nT545RbfQowQAAIB+wl/iyHrNb7+tUE2NQg8uVry+Xt6JE1T2pS/Jf+V8ecvLnR4e4IwVd0ir75cu\nukOacanTo0EWsNbqkbd26XsPr9HWA826MNmjNJkeJQAAAPQjgiVkpVgopNDixQrW1Kh19RqZ3FwV\nXXyRAlVVKjjxRBnKiTGcvX6P9NSPpONvlE79vNOjQRZ4a3tI3128Wi+8c0AzRhXp7zefrNPpUQIA\nAMAAIFhC1rDWqunFlxSsqVb90kdlW1uVO3uWRt36Lfkvv1zu4mKnhwg4793npAe+IE0+S5r3Y64A\nN8ztrW/Vj5au079e3qqSghzdcdWRunbueHncLqeHBgAAgGGCYAmOi+zZo9Ci+xRcWKPIu+/JVVSk\nQOXV8ldWKn/OHKeHB2SPA+9I935YCkyQPvgXyU1nznDVEonpj89s0V0rNqo1GtPNZ0zWLedNlz+f\n/ycAAAAwsAiW4AgbjarhyScVrK5Rw8qVUiymghNPVNnnP6+iCy+UK59LpgNpWkLSP66V4jHpQ/+S\n8kucHhEcYK3V0rd36Y6HEj1KF8wapW/Mo0cJAAAAziFYwoAKv/uugjULFVq0SNG9e+UuG6nSm25S\noPJq5Uya5PTwgOwUi0oLPiYd2CR99D6pdKrTI4ID3t4R0m0PHuxR+tsnTtYZ0+lRAgAAgLMIltDv\n4i0tql+2TMEF1Wp68UXJ7VbhWWcpcE2VCs88U8bL0g2gW498Vdq0XPrAL6TJZzo9GgywvfWt+vGj\n63TvqkSP0u1XHqnrTqRHCQAAANmBYAn9pmX1agWraxRavFjxujp5J0xQ2X/8h/xXXinvqHKnhwcM\nDi/cLb30W+m0f5OOv8Hp0WAAtUYTPUp3Lt+olkhMnzh9sr5wPj1KAAAAyC4ES+hTsbo61S1ZouCC\narWsXi2Tm6uiiy5SoKpKBSfOlXHxL+xAj214THrkK9KMedIF33Z6NBggiR6l3freQ2v03oEmXTCr\nXF+/bJamlBU6PTQAAACgE4IlvG/WWjW99JJCNTWqe2SpbGurcmfO1KhvfVP+yy+X2+93eojA4LN7\ndaJXadQc6eq7JZfb6RFhALy9I6TvLl6t5zcf0BGjCvXXT5ykM6eXOT0sAAAAoEsES+i16N69Ct53\nn0LVNQq/+65chYXyX32VApVVypszW8YYp4cIDE4Ne6V/Xivl+KTr75Vymaky1O2tb9VPlq3TPS9t\nVSDfq+9eeaSup0cJAAAAgwDBEg6LjUbV8NRTClbXqOGJJ6RYTAVz52rk5z6roosukis/3+khAoNb\npEW698OJcOnjD0n+sU6PCP2oNRrTn57Zol8ke5RuOn2y/o0eJQAAAAwiBEvokfB77ylYs1ChRYsU\n3bNH7pEjVXrTx+W/+mrlTp7s9PCAocFa6YEvSFtfkK75szT2eKdHhH5irdWjqxM9Su/ub9L5M8v1\njXn0KAEAAGDwIVhCl+Ktrap/dJmC1dVqeuEFyeVS4VlnKfA/t6rwrLNkvPyLOtCnnvyR9Oa/pPO+\nJc250unRoJ+s2Vmn2x5crec279cRowr1l5tO0llH0KMEAACAwYlgCZ20rF2r4IJqhR58UPG6OnnH\nj1fZF78o/1VXyjtqlNPDA4aWWFRqrZPWL5VW3C4dfZ105pedHhX6wb6GVv340fW696X35M/36rvz\n5+j6kybQowQAAIBBjWAJkqRYfb3qlixRcEG1Wt5+WyYnR0UXXaRAVZUKTjpRxsUfPkAn1kqRZqkl\nlAiHWkJSS53UEsywrYvH4YaDn2/8KdIHfi5RfD+ktEZj+vOzW/SLxzeqORLTx06brH8/f7r8Bcz6\nBAAAwOBHsDSMWWvV/PLLCi6oVt3SpbItLcqdOVOjvvlN+S+fJ3cg4PQQgf4Vj/UsAGoJSa2hzMfE\no92/hssj5fkTt9zixMeR5cltgYPb8kukGZdKntyB+drR76y1WrZ6t+5I9iidl+xRmkqPEgAAAIYQ\ngqVhKLpvn0L33adgdY3CW7bIVVgo/5XzFai6RnlzZsswWwKDQdtsoU6hUBcBUFpIlLyfOluoKzmF\n6aFQYbk0cvrBx3nFKcGRP31bbrHkzWcG0jC0Zmedvrt4tZ7dtF/Tywv155tO0tn0KAEAAGAIIlga\nJmw0qoann1awuloNT6yUolHlzz1BFZ/5tIovvliu/Hynh4jhJh5LBjwZAp+0UCjYdUgUj3T/Gm2z\nhVJDoJHTMgdAnUKi4sTNzY9J9Fxqj1Jxvle3zZ+jD9GjBAAAgCGMv5iGuPDWrQrW1Ci06D5Fd++W\nu7RUpR+7Uf6rK5U7ZbLTw8NgZa0UbelBANTNzKFw/aFfx+tLD3x8ZdKIqV2EQv7OIZG3gNlCGBDh\naFx/fnaLfv74BjVHYrrxtEn64vlH0KMEAACAIY9gaQiKt7aqftljClZXq+n55yWXS4Vnnin/N7+h\nonPOkfHyh86wF48fDHq67BfqOIuowzGxcPevYdydA6ARUzIEQF2ERMwWwiDQ1qP0vYfWaEuyR+nr\nl83StHJ6lAAAADA88FfbENKybp2CC6oVevBBxUMheceNU9kX/13+K6+Ud/Rop4eHvhRp6RwA9fQq\nZG0fD8XrSw98CkYeDIbSlo4FModEzBbCELd2V6JH6ZmN+zWNHiUAAAAMUwRLg1ysoUF1i5coWF2t\nlrfekvF6VXTRRQpUVarg5JNlXPR6ZJ14PLEMrMtZQsllZd2FRLHW7l/DuDrPABoxOXOfUKfHyftu\nZrYBmexvaNVPlq3XP19M9Ch95wNz9KGTJ8hLjxIAAACGIYKlQchaq+ZXXlFwQbXqli6VbW5W7hFH\naNQ3viH/FZfLHQg4PcShLdraw6uQdREKtdZJst2/hrcgPfApGCGVTMqwdKyLpWQ5PmYLAX0sU4/S\nv58/XYGCHKeHBgAAADiGYGkQie7bp9D99ytYXaPwO+/I5fPJ/4EPKFBVqbwjj5QhSDi09tlCXS0V\n68Gl6nsyW6jjUrHAxG4Kp1O3BZgtBGQZa60eW7NHdyxZrS37m3TujDJ9Y95sepQAAAAAESxlPRuL\nqfHppxWsrlH9ihVSNKr8E05Qxac+peKLL5KroMDpIQ6saOvBWT+pVyHrUb9Q8v6hZgt58jtcer4t\nGDrUVciSz8kpZLYQMESs3VWn2xev0dMb92laeaH+9PETdc6McqeHBQAAAGQNgqUsFd62TcGaGoUW\n3aforl1yl5ZqxI03KFBZqdwpU5weXu/E41K44dBXIesuJIq2HOJFTOdlYoHxUt6Rh+gXSgmJPCxr\nAYa71B6lojyvvn3FbH34lIn0KAEAAAAdECxloZ3f+paCC6oll0u+M8/QqG98XUXnnCPjdXh5VDTc\nzaXou1k61ra8rLVesvHuX8OT1zkACozvvLSsq5Aop1CisBxAL4Wjcf3luS362eMb1BSO6YZTJ+mL\nF9CjBAAAAHSl34MlY8wlkn4myS3pd9ba73fYnyvpL5JOkLRf0rXW2i3GmEmS1khalzz0eWvtZ/p7\nvNkg7+ijNbKiQoGrrpK3oqJvPqm1idlCGZeO9TAkijYf4kWSs4VSC6UD46XcOd1fhaz9cvXFkie3\nb75eADgM1lo9vmaP7nhojd7Z16hzZpTpm/NmaVp5kdNDAwAAALJavwZLxhi3pLskXShpm6SXjDEP\nWGtXpxz2CUm11tppxpjrJP1A0rXJfZustcf25xizUck113TeGIt0fRn6LkOhYPrjQ80Wcud2CHz8\nUvHYnl2FLK9YyilithCAQWfdrnrdvmS1ntqwT1PLfPrjx0/UufQoAQAAAD3S3zOWTpK00Vq7WZKM\nMfdImi8pNViaL+nbyfvVku40w/3yZiu+J21anh4KRZoO/bzcDoFP8TipPCUk6rR0LCUkyi2WvHn9\n/7UBQJY40BjWT5at0z9eoEcJAAAA6K3+DpbGStqa8nibpJO7OsZaGzXGhCSVJvdNNsa8KqlO0jet\ntU91fAFjzKckfUqSJkyY0Lejd1JOoVQ8pvNl6Lu6VD2zhQCgRzL1KP37+dNV4qNHCQAAADhc2Vze\nvVPSBGvtfmPMCZLuM8bMsdbWpR5krb1b0t2SNHfu3ENcR36QOPfrTo8AAIYca62Wr92jO5as0eZ9\njTrriDJ9a94sTR9FjxIAAADQW/0dLG2XND7l8bjktkzHbDPGeCT5Je231lpJrZJkrX3ZGLNJ0hGS\nVvXzmAEAQ8z63fX67mJ6lAAAAIC+1t/B0kuSphtjJisRIF0n6UMdjnlA0o2SnpNUJWm5tdYaY8ok\nHbDWxowxUyRNl7S5n8cLABhCDjSG9X/L1usfL74nX45b/3PFbH2EHiUAAACgz/RrsJTsTLpF0lJJ\nbkl/sNa+bYy5TdIqa+0Dkn4v6a/GmI2SDigRPknSWZJuM8ZEJMUlfcZae6A/xwsAGBrC0bj++vy7\n+tlj69UYjukjJ0/QFy84gh4lAAAAoI+ZxIqzoWHu3Ll21SpWygHAcGWt1Yp1e3T7YnqUAAAAgL5i\njHnZWjs3075sLu8GAKDHUnuUppT59MePnahzZpTJGOP00AAAAIAhi2AJADCoHWgM66ePrdffX0j0\nKN16+Wx99FR6lAAAAICBQLAEABiUIrG4/vrcu/ppskfpw8kepRH0KAEAAAADhmAJADCoWGv1xLq9\n+u6S1dq8t1FnTh+pb10+W0fQowQAAAAMOIIlAMCgsWF3vb67ZI2eXL9XU0b69IePzdW5M8rpUQIA\nAAAcQrAEAMh6tckepb8le5S+dflsffSUicrx0KMEAAAAOIlgCQCQtSKxuP72/Lv66WMbVN8S0YdP\nnqj/uJAeJQAAACBbECwBALLSirV70nqUvjlvtmaMpkcJAAAAyCYESwCArLJhd71uX7JGK9fv1eSR\nPv3+xrk6byY9SgAAAEA2IlgCAGSFYFNYP31sg/76/LsqyHHrm/Nm6YZTJ9GjBAAAAGQxgiUAgKMi\nsbj+/vy7+r9kj9KHTp6gL104gx4lAAAAYBAgWAIAOGbFuj26ffFqbdrbqDOmjdS3LqdHCQAAABhM\nCJYAAANu455Ej9IT6xI9Sr+7Ya7On0WPEgAAADDYECwBAAYMPUoAAADA0EKwBADodx17lK4/aYK+\ndOERKi3MdXpoAAAAAN4HgiUAQL96Yt0e3b5kjTbuadDp00r1rctna+boYqeHBQAAAKAPECwBAPrF\nxj0NumPJaq1Yt1eTSgv02xvm6gJ6lAAAAIAhhWAJANCn2nqU/vb8u8r3uvWNy2bpxtPoUQIAAACG\nIoIlAECfiMbi+seL7+kny9arrjmi606aoC/TowQAAAAMaQRLAID3beX6vbp98Wpt2NOg06YmepRm\nVdCjBAAAAAx1BEsAgF7btLdBty9O9ChNLC3Q3R89QRfOHkWPEgAAADBMECwBAA5bqCminz2+QX95\nbovyvW59/bKZuvG0Scr1uJ0eGgAAAIABRLAEAOixTD1KX7rwCI2kRwkAAAAYlgiWAAA98uT6vfpu\nskfp1CmluvUKepQAAACA4Y5gCQDQrU17G/S9JWv0+No9mlhaoN989ARdRI8SAAAAABEsAQC6kNqj\nlOd162uXztTHTqdHCQAAAMBBBEsAgDTRWFz/TPYoBZsjuu7ERI9SWRE9SgAAAADSESwBANo9tSHR\no7R+d4NOmTJCt14+R7PH0KMEAAAAIDOCpSy05I2deu9Ak0oKvAoU5ChQ4FVJQU774xyPy+khAhhi\nNu9t0B3JHqUJIwr064+coIvn0KMEAAAAoHsES1nowdd36JG3d3W535fjVqAgRyU+rwL5nYOntscH\nt+eoKM8jl4s/EAGkCzVH9PPHN+jPz9KjBAAAAODwESxloV995Hg1R2KqbYqotjGsUHNEtU1h1TZF\nFGxMfmwKK5jcvj3YrNqmxHHWZv6cLiP589MDp0B7GOVN3j8YTrWFVvk5/HEJDEXRWFz/fGmrfvLo\numSP0nh96cIZ9CgBAAAAOCwES1nIGKOCHI8KcjwaG8jv8fNicau65kh74BRsCqu2se1+RMHmg6HU\nzlCL1uysU21TRM2RWJefM9fjSp/95PPKn58IoLra7s/3yuNmuR6QrZ7esE/fXbxa63bX65QpI/St\ny2drzhi/08MChgRrrZqiTaptqVWwNahgazDtfrAlqNrWWoVaQ6oP18sYI7dxy2Vc7R/bbqnbOx3n\nSm6XkdvVi+d383ldSj7f1f3zM71Ox20Z73cz9kyvxZJcAACyG8HSEOJ2GZX4clTiy9Fk+Xr8vJZI\n7OCsqMb02VDB5KyptkBq/e6GRGDVFFEs3sX0KEnFeR6V+BKzogL53oMzodpmQ7VvT4ZTvhz5cnjz\nCPSnd/Y16o4lq/XYGnqUgJ6w1qox0pgxIKptSYRDta2dQ6NoPJrx87mMS4HcgPy5fpXklqisoEzW\nWsVtXDEbk7VWMRtTNB5VzMY6bW97HLfx9lvMxhSPJ4+TTXvc8flWXf/ezmZGpsdhW6ZQ7HDCtoxh\nWVdhW1+GesnP45KrPXjrTYjX47F3MyYAAA4XwRKU53Urz+vWqOK8Hj/HWqv61qiCbTOimiPJGVIH\nQ6japoOzpzbva1CwMaL61sxvtiXJ6zadA6eCHAV8yY/53vble4nQKrFcjzJzoHuh5oh+8fgG/fm5\nLcr1uPXVS2fq4/QoYZhpC4lqW2sVbAlmnk2UITQ6VEjUdhtfOF5Hjzy6PTQK5B3cV5JXokBuQEU5\nRXIZ535npQZUacHUIQKruOJpYVWPntvd9njmEOxwPm9Pw7ZDPT81xOvR63QT4qU+f7CGeJIOfwZd\nL2a29ei41LDtfc6g6/h5jUza7Lm212l/zS7Cu8P9b5IpKPS6vAR4AIYcgiX0ijFGxXleFed5NaG0\noMfPi8TiCjZFFEouy6ttTM6KSgZRoeaDy/fe3d+k17YGFWyKKByLd/k5U8vM27qj0mZJ+Q7OlmoL\nrSgzx3AQjcV1z0tb9ZNl61XbFNa1c8frSxcdofKinofIQDay1qoh0tBpaVnHkKjj465CIrdxy5/r\nbw+CJhRNUElZycHgKC+gktySRGiUJSFRbxhj5DG89RsI7bPEMgRgXQVhcWUIxTqEegMRth12WJga\ntsW7Pq43IV5chx7/YAvxct25qvBVaGzhWI0pHJO4+RIfxxaOVWl+6aD72QIAvLvAgPK6XSoryj2s\ngmBrbVqZeVsQFWxOLzNvC6e21faszDztCnoZZkOlbU+GVnleZnhgcHhm4z7d9mCiR+nkySN06xX0\nKCE7tYdEyVlE7UvLUh53Co1agoranoVEE4sn6pjcY9pnDmWaUTQYQyJkt9QQzyuvw6MZ2roL8Q55\n/xAhXn+EbaHWkHY07tD2hu16e//bCrYG074er8ubFja13cYWjlWFr0Jl+WVyu3g/CiC7ECwh673f\nMvNMs6Haw6lkqXlPy8zzvIky87Yr7B2cDeXtYntim5vZURggiR6lNXpszW6NH5GvX3/keF08ZzTT\n7jEgUkOi1O6htD6ils5Lzg4VErXNFuoYEmWaUURIBAwvgz3Ea4o0aUfDDu1o3JH42JAInXY07NCK\nrSt0oOVA2vEel0cVvoq04KktdBpbOFblBeUETwAGnLFdTekYhObOnWtXrVrl9DAwyLVEYgevotd4\nsC+q7Up7iVDq4CypYLJLqqdl5qlX1Avkdw6nAsklfJSZ43CEmiO6c/kG/enZLcpxu3TLedP18dMn\nMcsOvWatVX2kvss+okxh0aFCou6WlmWaUVToLSQkAjCsNUebtbNhZ3vwtL1hu3Y27NT2xkT4tK95\nX9rxHuPRKN+o9llPYwvHqqLw4NK7UQWj5HExtwDA4TPGvGytnZtxH8ES8P51LDPvNCsqLZxKfAw1\ndV9mnuN2yV+QekW9RBDVVmaeeqW9RBhFmflwFItb3fPSe/rxo4kepQ+eMF5fvpgeJaRLDYkyLS3r\nuMystrVWda11hwyJulpalhYW5ZbIn+dXkbeIsBwA+lhrrDURPDXs0PbGZOiUnPG0o2GH9jbvTeuh\nchmXRhWM6tTt1PZ4tG+0vO7BN/MLQP8jWAKyVFuZeftV9JrSy8zTZkWlBFPdlZkX5noOdkSlhlLt\nHw8GUm3bi/M8/ME3CD27cZ9uW7xaa3fV66TJI3Tr5bN15Fh6lIa6uI2rPlzf5dKyTDOKQq0hxWzm\nZb4e4+k0c6jLGUUpM4n4mQEA2S8cC2tX467ETKfG9NBpR+MO7W7cnRY8GRmVF5SnFYunznqq8FUo\nx53j4FcEwCkES8AQYq1VUziWIXA6OCsq1Cmciqiupesyc7fLyJ/vbQ+kSjoEUqlBVUnKLCmWWTnj\nnX2N+t5Da7Rs9W6NK8nXNy6bpUuOpEdpMGoLiTrOFupuRtGhQqKOM4faZxQlA6P2gCj5mJAIAIav\nSCyiXU27Ds50Sul62tGwQ7ubdnf6nVOWX5ax32lM4RhV+CqU52HWNDAUESwB6FRmnmmWVOpsqVDy\nY0/KzNMKzJPL91K3p4ZTlJn3Xl1LRHcu36g/PvOOctwuff68abrp9MkEfFkiNSTKtLSs05XNkre4\nzTwDMVNI1D6jqItlaIREAIC+FI1Htadpz8GZTh1Kxnc37u60bLo0r/Rg0FRYobG+sQN2ZgsAABfD\nSURBVO1BVIWvQgXeAoe+GgDvB8ESgF5rKzNv644KJcvLU2dJdQynuiszN0YqzvN2Mxsq8/aCYVxm\nHotb3fvSVv340XU60BTWNSeM039eNEPlxfyLYH9pC4m6LKtOBkbB1oOhUbchkcvTZUDU1RXOfF7f\nsP1/HgAwOMTiMe1t3ttpiV1byfiOxh2KxtODpxF5IzTGNyatVDz1Knc+r8+hrwZAdwiWAAyoeDxZ\nZt7FbKhM24NNETUcosw8kNYR1XFWVOfuqECBV1734C4zT+tRmjRCt15Bj9Lh6iokSp011PEKZ6Fw\nqNuQKFP/UKfS6pQZRYREAIDhKG7j2tu0N63fqa3vqS2ICsfDac8J5AbSltd1DJ6Kcooc+mqA4Y1g\nCcCgEI7GFWrueBW9tjDqYJl5x6V8kVjXP8c6lpl3LDXPtD0bysy3JHuUHk32KH39slm6lB4lxW1c\nda11mXuIMi0362FIlLbkLFNpdcp9QiIAAPpG3MZ1oOVAeujUsFPbGxOPdzbsVEusJe05RTlFidAp\nJWxK7Xsqzinm9zTQDwiWAAxZHcvMO3ZEdbU91Bzp8nO6XUaBlDLzzlfXS9z390OZeV1LRHct36g/\nJHuUPnfuNH3ijKHZoxSLxxIziTIsLeuqm6guXNdlSOR1edsvbd9eTp1SWJ1pRlGBp4A3nwAAZClr\nrQ60HEjrd2oLodpmQTVHm9OeU+gt7DTLqT188o2VP9fP736gFwiWAKCDWNwq1JzSC5U2E6othOpY\ndh5WSyRzqCFJ+V53MnDqejZUSYfZUsXJMvOOPUpVx4/Tf108eHqUYvGY6sJ1XS4taw+MWoJpVzdL\nvcRxqraQqMsrnKVe3Sx5n5AIAIDhxVqrYGuwU6l46qynxkhj2nMKPAVpS+zGFo5N63sqyS3h/QSQ\nQXfBkmegBwMA2cDtMhrhy9EIX85hPa9jmXlaaXmHZXprdtW1b++iy7y9zNzrNtrXENaJk0r0p8tP\n0lHjnOtRaguJulpa1nGG0eGERCW5JTqi5IiMZdWp9/M9+bypAwAA3TLGqCSvRCV5JZpTOqfTfmut\n6sJ16aFTSt/Tq3teVX24Pu05+Z58Vfgq0mY9pfY9leaV8h4F6IBgCQAOQ57XrdF+t0b7ez6TKLXM\nPLU7Kpi8wl6wKaz6lqgumDVKlx3Vtz1KqSFRahCUaUZR26yiuta67kOiZChUkluiGSNmHHJGESER\nAABwgjFG/ly//Ll+zSqdlfGYunBdYoZTh9BpR8MOvbnvTYVaQ2nH57pzDwZPbaFTyrK7kfkj5TKD\n++IxwOEiWAKAfuZyGfnzvfLnezWxtPefJxaPKRQOdbm0LC0sSm7rLiTKceWkzRbqGBJlmlFESAQA\nAIaS4pxiFY8o1owRMzLub4w0ps14Su17WrN/jWpba9OO97q87cFT20yn1KvcleWXye0aet2ZGN4I\nlgBgAMXiMTVGG9UUaVJjpDHt1hYKdVp+lgyN6sP1PQuJ8gKa6ZvZuay6Q7E1IREAAED3fF6fppdM\n1/SS6Rn3N0Wa0mc6pfQ9PbH1Ce1v2Z92vMd4NNo3+mDo1NbvlJz1VF5QLo+LP9MxuPB/LAB0w1qr\ncDzcHv60BUINkYb0cCjaqMZw8mMkc3DUFG3qdOWSTHJcOQcDobyAZvlmJZaYdQiJUoutCYkAAAAG\nXoG3QFMDUzU1MDXj/uZos3Y27mwPm9pvjTv09Pantbd5b9rxbuPWaN/oTjOd2oKnUb5R8rq8A/Gl\nAT1GsARgyInbuJqjzRnDoPbH0UY1hBvUFG1KO67jMY2RRkXj0R69bq47Vz6vr/1W4ClQWUGZJnkm\nqcBbkLav43E+r0+B3ID8uX5CIgAAgCEi35OvKf4pmuKfknF/a6xVOxt2ps10arv//M7ntbdpb9qM\ndZdxaVTBqPTQqa3vyTdWo32j5XUTPGFgESwByAqReCTjLJ/U2T6ZZgplCoOaIk1dLhlLZWQSwU5b\n6ONJBD2leaXp2zvePIl9hd7CtOOYtgwAAIDDkevO1ST/JE3yT8q4PxKLaFfjLm1v3J4242l7w3at\n2r1Ku9/ZrbiNtx9vZFRWUNZpplNb51OFr0I57sO7KjJwKPwVBKBXrLVqibV0ueyrLeBJC326CYxa\nY609el2Py5Me6Hh8CuQFNLZw7MEZQB1Dn2Rg5Ms5GB75vD5mBgEAACCred1ejS8er/HF4zPuj8Qj\n2t24O22mU9sV7l7b85oeaXxEMRtLe05Zflnm0KmwQmN8Y5Tn6fnVjwGJYAkYVmLxWHuQ06krKNrF\nTKGOgVBKh1DHX1Jdyffkpy37KswpVIWvossZQW1hUGFOYfsysbYb/8ICAAAAJHhdXo0rGqdxReMy\n7o/Go9rbtDdRLt6YDJ0aEp1Pb+57U8veXaaoTa99KM0r7bTErq1kvO09PJCKYAnIcuFYuNMMn4Zw\nQ9qVxbpdHpbSIdST4mgpURrYcXmYz+tTeUH5YS8PK/AUcElVAAAAwAEel0cVhRWqKKzIuD8Wj2lv\n8960mU5t99ceWKvl7y1XJB5Je05Jbkmn5XWpfU8+r28gvjRkEYIloI9Za9OKo9uvFpayPOxQVxVL\n3d7xB3lX2oqjU2f4jMwfeejlYR1nCnl9ynPnsUQMAAAAGOLcrsRV6Eb7Ruv4Ucd32h+3ce1r3pdW\nLN4262lD7Qat3LpS4Xg47Tn+XL/G+A4urxtbODZt2V1RTtFAfXkYIARLgBJTRPtqeVhjpLHHxdFt\nAU9boFPoLVRJXknmMMjTzVXFvAVcdhQAAABAn3IZl8oLylVeUK5jy4/ttD9u4zrQciCtVHxn405t\nb9iuzaHNembHM51WTRTlFHWe6ZQSPBXnFPOP3IMMwRIGJWutWmOt3V46PmMY1MUl5ltiLT16XY/L\n02nZlz/Xr4rCii6XhrUFRh2vMpbvyZfLuPr5vxQAAAAA9A+XcWlk/kiNzB+po8uO7rTfWqva1tqD\noVPDzva+p631W/X8zuc7BU8+r6+92ym166ltmz/XT/CUZQiWMGDiNn5wpk/Ksq+MM4W66RNqux1O\ncXTH2T6jCkalhT5dLQ1LDYMKvYUURwMAAABADxljNCJvhEbkjdCRI4/stN9aq1BrSNsbU0KnlCvc\nvbT7JTVGGtOek+/Jb5/plGnW04i8EQRPA4xgCd2KxCJpS70yLQdLC4OiXS8Za4o29eg1XcbVabZP\ngbdAZfllaVcV68nysAJPgTwu/jcHAAAAgGxjjFEgL6BAXkBzSud02m+tVV24rn15XXvXUzJ8enXP\nq6oP16c9J8+dlwidCis6zXoaWzhWpXmlBE99jL+4h5i24ui2pV6dCqI7hkNdHNd2VbGeFkfnuHI6\ndQKNyBuh8UXju10elukKYxRHAwAAAACMMfLn+uXP9WvmiJkZj6kP16eFTan33973toKtwbTjc925\nqvBVHAycfAdDpzGFYzQyfySVJYeJYCkLbQ5t1q7GXV0GQt2FQY3RRsVtvEevk2m2T9vlIQ9neRjF\n0QAAAAAAJxTlFGnGiBmaMWJGxv2NkUbtaNiRcdbT2gNrdaDlQNrxXpe32+CpLL9Mbpd7IL60QYNg\nKQvd+eqdWvbusk7bPcbTaYZPUU6RRvtGty8PO9TSMJ/Hp8KcQoqjAQAAAABDns/r0/SS6ZpeMj3j\n/qZIk3Y17urU77SjYYdWbl2p/S370473GI9G+0Z3WmLX1vdUXlA+7OpYjLWHviz6YDF37ly7atUq\np4fxvq07sE4NkYb2pWO+nEQwlOPKYYkYAAAAAAADpCXaop2NO9NCp7YQamfDTu1p3pN2vNu4Napg\nVHvoVDm9UsePOt6h0fcdY8zL1tq5mfYNrxhtkOhqCh8AAAAAABg4eZ48TfZP1mT/5Iz7W2Ot2tW4\nq32W0/aG7e1B1As7X9BZ484a4BEPPIIlAAAAAACAXsh152pi8URNLJ7o9FAcQ8kOAAAAAAAAeoVg\nCQAAAAAAAL1CsAQAAAAAAIBeIVgCAAAAAABArxAsAQAAAAAAoFcIlgAAAAAAANArBEsAAAAAAADo\nFYIlAAAAAAAA9ArBEgAAAAAAAHqFYAkAAAAAAAC9QrAEAAAAAACAXiFYAgAAAAAAQK8QLAEAAAAA\nAKBXCJYAAAAAAADQKwRLAAAAAAAA6BWCJQAAAAAAAPQKwRIAAAAAAAB6hWAJAAAAAAAAvUKwBAAA\nAAAAgF4hWAIAAAAAAECvECwBAAAAAACgVwiWAAAAAAAA0CsESwAAAAAAAOgVgiUAAAAAAAD0Sr8H\nS8aYS4wx64wxG40xX82wP9cYc29y/wvGmEkp+76W3L7OGHNxf48VAAAAAAAAPdevwZIxxi3pLkmX\nSpot6XpjzOwOh31CUq21dpqk/5P0g+RzZ0u6TtIcSZdI+mXy8wEAAAAAACAL9PeMpZMkbbTWbrbW\nhiXdI2l+h2PmS/pz8n61pPONMSa5/R5rbau19h1JG5OfDwAAAAAAAFmgv4OlsZK2pjzeltyW8Rhr\nbVRSSFJpD58LAAAAAAAAh3icHsD7ZYz5lKRPJR82GGPWOTmePjRS0j6nBwFHcO6HL8798MW5H544\n78MX53744twPX5z74WuonPuJXe3o72Bpu6TxKY/HJbdlOmabMcYjyS9pfw+fK2vt3ZLu7sMxZwVj\nzCpr7Vynx4GBx7kfvjj3wxfnfnjivA9fnPvhi3M/fHHuh6/hcO77eyncS5KmG2MmG2NylCjjfqDD\nMQ9IujF5v0rScmutTW6/LnnVuMmSpkt6sZ/HCwAAAAAAgB7q1xlL1tqoMeYWSUsluSX9wVr7tjHm\nNkmrrLUPSPq9pL8aYzZKOqBE+KTkcf+StFpSVNLnrbWx/hwvAAAAAAAAeq7fO5astQ9JeqjDtltT\n7rdIuqaL594h6Y5+HWD2GnLL+9BjnPvhi3M/fHHuhyfO+/DFuR++OPfDF+d++Bry594kVp0BAAAA\nAAAAh6e/O5YAAAAAAAAwRBEsAQAAAAAAoFcIlvqJMeYPxpg9xpi3UrYdY4x5zhjzpjHmQWNMccq+\no5P73k7uz0tuf8IYs84Y81ryVt7F633NGLMxeezF/f8VIpO+OO/GmKKU8/2aMWafMeanGV5rkjGm\nOeW4Xw/U14nODufcG2M+3OEcx40xxyb3nZA8fqMx5ufGGJPhtUxy30ZjzBvGmOMH7itFR31x7o0x\nBcaYJcaYtcmfB9/v4rX4vs8iffh9z+/6QaaPvu/5fT8IHea59xpj/pzcvsYY87WU51yS/F7eaIz5\nahevlWuMuTd5zAvGmEn9/fUhs74478aY8caYFcaY1cnf9f/exWudY4wJpXzP35rpOAyMPvye35Lc\n/poxZlUXr2XMYH2Pb63l1g83SWdJOl7SWynbXpJ0dvL+TZK+m7zvkfSGpGOSj0sluZP3n5A09xCv\nNVvS65JyJU2WtKnt+dwG53nv8DlflnRWhu2TUl+H2+A59x2ed5SkTSmPX5R0iiQj6WFJl2Z4zmXJ\nfSZ57AtOf/3D+dYX515SgaRzk/dzJD3Vxbnn+z6Lbn34fc/v+kF266tz32Efv+8Hwe0w3+t9SNI9\nyfsFkrYkz6c7+T08Jfkz/3VJszO81uck/Tp5/zpJ9zr99Q/XWx+d9wpJxye3F0la38V5P0fSYqe/\nZm59d+6Tj7dIGnmI1xq07/GZsdRPrLVPSjrQYfMRkp5M3l8mqTJ5/yJJb1hrX08+d7+1NnYYLzdf\nif+BW62170jaKOmkXg8evdbX590Yc4SkciX+yEQWO8xzn+p6SfdIkjGmQlKxtfZ5m/jt8hdJV2Z4\nznxJf7EJz0sKJJ8LB/TFubfWNllrVyTvhyW9ImlcvwwYfaYvzv1h4Hd9Funrc8/v+8HjMM+9leQz\nxngk5UsKS6pT4nt3o7V2c/Jn/j1KfI93NF/Sn5P3qyWdb0znmczof31x3q21O621ryQ/X72kNZLG\n9vfY8f700fd8Tw3a9/gESwPrbR38pXGNpPHJ+0dIssaYpcaYV4wx/93heX9MTpn7Vhe/TMZK2pry\neJv4IZVN/n97dxdqWVnHcfz7c4514fQCKUhJMRMKFWKWTVON9opQVBCJjQ0adRGTUyF1V1EhXXQh\nRm8QZRlEMxCpeaBRhwwMukgbK6cxofTCHAYsC22aMsf5d7Gec+Y47X2avdxnvxy+H9jstdde++FZ\n/Pezn7X/az3P6ht3OHF2atjtGzcl+U2Su5JcPN5qawyGxX6lDwB72vJL6NrvkmFt2TY/+0aN/bIk\nLwTeA9w5pGzb/WzrG3v7+vnXu91jfz/vhsX+x8A/gcPAw8B1VfU3Tr09L29XVceAx+mucNdsGDXu\ny9qwxguBXw0p+w1JfpfktiSvGnO99ez1iX0B+5LsT/LRIeXObV9vYmmyPgJcnWQ/3eWP/2nrF4Bt\nwI72/L4kb2/v7aiq84GL2+PKyVZZY9An7ku2M/gAFLofrJdW1YXAp4DdWTF/k2bCsNgDkOT1wNGq\n+v2gD2uu9Yp9O8O1B/haVT00oFzb/ezrE3v7+vXh2fzm29/Pt2Gx3wI8DbyYbgjrp5Nsnk4VtQZ6\nxT3JRuAm4JqqGnQ1y73Ay6rqAuDrwE/WbhfUU5/Yb6uq1wDvBHYluWTCdV5TJpYmqKoeqKpLq+q1\ndAcPD7a3HgF+UVV/raqjwF66cZxU1aH2/A9gN4Mvez/EM8+KndPWaQb0iTt0k8IBC1W1f0i5T1bV\nY215fyv3vDXcFY1oldgvOfmPxCGeOfxpWFu2zc+4HrFf8m3gj1X1PxP4tnJt9zOuT+zt69eHvu3e\n/n7+rRL7DwK3V9VTVfUo8EvgIk69PS9v1048vAB4bG32QqPqEXeSnE6XVPphVd08pNwnqupIW94L\nnJ7kzDXeHY2gT+xX9PWPArewzvp6E0sTlHaXlySnAZ8Dlu7qcQdwfrq7Ai0AbwbuT7Kw9CPSfoTe\nDQw6y7UIbE9354hNwLl0EwBrBowa9xUfvYLhZy9JclaSDW15M13cB13hoClZJfZL6y5nxVwbVXUY\neCLJ1jYU5irg1gFFLwJXtTtHbAUeb5/VjBg19m39l+j+NFyzSrm2+xk3auzt69ePPu2+sb+fc6vE\n/mHgbe29M+gm432AbuLfc5NsSvIcuqTj4oCiF4EPteXLgJ+vMlxSEzZq3Nux3XeBP1TV9auUe/bS\nkOgkW+j+s5tQnCE9Yn9GkuetWH8pw/v6uTzGX5h2BdarJHvoZvQ/M8kjwBeAjUl2tU1uBm4EqKq/\nJ7merpMpYG9V/bR96e5oB5obgJ8B32nlv5fuDjKfr6qDSX5El5Q4BuwacfJvjck44r6iuMvp7gyw\nsvzluNPdoeDaJE8Bx4GdJ4/f1uSMEvvmEuDPA4Y7XQ18n27Cv9vagyQ7AarqW3RXt72LbvLeo8CH\nx79HOlXjiH2Sc4DP0v3huLcdT36jqm6w3c+uMbX752JfP3fG+JsP9vdzZcTYf5Nu/rSDdHd5urGq\n7mvlfJzuJOMG4HtVdbCtvxb4dVUt0iUhfpDkT3STB2+fwC5qgHHEPck2uqHOB5L8tm37marae9Jx\n3mXAx5IcA/4FbDehOD1jiv1m4JZ2fLcA7K6q21v56+IYP35HJUmSJEmS1IdD4SRJkiRJktSLiSVJ\nkiRJkiT1YmJJkiRJkiRJvZhYkiRJkiRJUi8mliRJkiRJktTLwrQrIEmStB4keRFwZ3t5NvA08Jf2\n+mhVvXEqFZMkSVpDqapp10GSJGldSfJF4EhVXTftukiSJK0lh8JJkiStsSRH2vNbktyV5NYkDyX5\ncpIdSe5OciDJy9t2ZyW5Kck97fGm6e6BJEnSYCaWJEmSJusCYCfwCuBK4Lyq2gLcAHyibfNV4CtV\n9Trg/e09SZKkmeMcS5IkSZN1T1UdBkjyILCvrT8AvLUtvwN4ZZKlzzw/ycaqOjLRmkqSJP0fJpYk\nSZIm68kVy8dXvD7OiWOz04CtVfXvSVZMkiRpVA6FkyRJmj37ODEsjiSvnmJdJEmShjKxJEmSNHs+\nCVyU5L4k99PNySRJkjRzUlXTroMkSZIkSZLmkFcsSZIkSZIkqRcTS5IkSZIkSerFxJIkSZIkSZJ6\nMbEkSZIkSZKkXkwsSZIkSZIkqRcTS5IkSZIkSerFxJIkSZIkSZJ6+S+SPbnWN7B3XAAAAABJRU5E\nrkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "LCHt8uRV7kY7",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 695
},
"outputId": "e4b8a376-d47d-4562-9821-00afc61dcfc1"
},
"source": [
"red_df = dat_df[red]\n",
"red_df[\"is_winner\"] = red_df[\"Winner\"] == \"Red\"\n",
"red_df.columns = [s.strip(\"R_\") for s in red_df.columns]\n",
"red_df"
],
"execution_count": 169,
"outputs": [
{
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" \n"
],
"name": "stderr"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
fighter
\n",
"
current_lose_streak
\n",
"
current_win_streak
\n",
"
draw
\n",
"
avg_BODY_att
\n",
"
avg_BODY_landed
\n",
"
avg_CLINCH_att
\n",
"
avg_CLINCH_landed
\n",
"
avg_DISTANCE_att
\n",
"
avg_DISTANCE_landed
\n",
"
avg_GROUND_att
\n",
"
avg_GROUND_landed
\n",
"
avg_HEAD_att
\n",
"
avg_HEAD_landed
\n",
"
avg_KD
\n",
"
avg_LEG_att
\n",
"
avg_LEG_landed
\n",
"
avg_PASS
\n",
"
avg_REV
\n",
"
avg_SIG_STR_att
\n",
"
avg_SIG_STR_landed
\n",
"
avg_SIG_STR_pct
\n",
"
avg_SUB_ATT
\n",
"
avg_TD_att
\n",
"
avg_TD_landed
\n",
"
avg_TD_pct
\n",
"
avg_TOTAL_STR_att
\n",
"
avg_TOTAL_STR_landed
\n",
"
longest_win_streak
\n",
"
losses
\n",
"
avg_opp_BODY_att
\n",
"
avg_opp_BODY_landed
\n",
"
avg_opp_CLINCH_att
\n",
"
avg_opp_CLINCH_landed
\n",
"
avg_opp_DISTANCE_att
\n",
"
avg_opp_DISTANCE_landed
\n",
"
avg_opp_GROUND_att
\n",
"
avg_opp_GROUND_landed
\n",
"
avg_opp_HEAD_att
\n",
"
avg_opp_HEAD_landed
\n",
"
avg_opp_KD
\n",
"
avg_opp_LEG_att
\n",
"
avg_opp_LEG_landed
\n",
"
avg_opp_PASS
\n",
"
avg_opp_REV
\n",
"
avg_opp_SIG_STR_att
\n",
"
avg_opp_SIG_STR_landed
\n",
"
avg_opp_SIG_STR_pct
\n",
"
avg_opp_SUB_ATT
\n",
"
avg_opp_TD_att
\n",
"
avg_opp_TD_landed
\n",
"
avg_opp_TD_pct
\n",
"
avg_opp_TOTAL_STR_att
\n",
"
avg_opp_TOTAL_STR_landed
\n",
"
total_rounds_fought
\n",
"
total_time_fought(seconds)
\n",
"
total_title_bouts
\n",
"
win_by_Decision_Majority
\n",
"
win_by_Decision_Split
\n",
"
win_by_Decision_Unanimous
\n",
"
win_by_KO/TKO
\n",
"
win_by_Submission
\n",
"
win_by_TKO_Doctor_Stoppage
\n",
"
wins
\n",
"
Stance
\n",
"
Height_cms
\n",
"
each_cms
\n",
"
Weight_lbs
\n",
"
age
\n",
"
Winner
\n",
"
date
\n",
"
weight_class
\n",
"
is_winner
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Henry Cejudo
\n",
"
0.0
\n",
"
4.0
\n",
"
0.0
\n",
"
21.900000
\n",
"
16.400000
\n",
"
17.000000
\n",
"
11.000000
\n",
"
75.000000
\n",
"
26.500000
\n",
"
9.400000
\n",
"
6.500000
\n",
"
74.200000
\n",
"
23.90
\n",
"
0.400
\n",
"
5.300000
\n",
"
3.700000
\n",
"
1.200000
\n",
"
0.000000
\n",
"
101.400000
\n",
"
44.000000
\n",
"
0.466000
\n",
"
0.100000
\n",
"
5.300000
\n",
"
1.900000
\n",
"
0.458000
\n",
"
129.900000
\n",
"
69.100000
\n",
"
4.0
\n",
"
2.0
\n",
"
13.300000
\n",
"
8.800000
\n",
"
7.500000
\n",
"
5.100000
\n",
"
90.500000
\n",
"
26.800000
\n",
"
0.800000
\n",
"
0.300000
\n",
"
76.100000
\n",
"
17.300000
\n",
"
0.100000
\n",
"
9.400000
\n",
"
6.100000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
98.800000
\n",
"
32.200000
\n",
"
0.336000
\n",
"
0.000000
\n",
"
0.900000
\n",
"
0.100000
\n",
"
0.050000
\n",
"
110.500000
\n",
"
43.300000
\n",
"
27.0
\n",
"
742.60
\n",
"
3.0
\n",
"
0.0
\n",
"
2.0
\n",
"
4.0
\n",
"
2.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.0
\n",
"
Orthodox
\n",
"
162.56
\n",
"
162.56
\n",
"
135.0
\n",
"
32.0
\n",
"
Red
\n",
"
2019-06-08
\n",
"
Bantamweight
\n",
"
True
\n",
"
\n",
"
\n",
"
1
\n",
"
Valentina Shevchenko
\n",
"
0.0
\n",
"
2.0
\n",
"
0.0
\n",
"
12.000000
\n",
"
7.714286
\n",
"
9.285714
\n",
"
6.857143
\n",
"
88.142857
\n",
"
36.142857
\n",
"
18.428571
\n",
"
16.428571
\n",
"
84.571429
\n",
"
37.00
\n",
"
0.000
\n",
"
19.285714
\n",
"
14.714286
\n",
"
1.714286
\n",
"
0.142857
\n",
"
115.857143
\n",
"
59.428571
\n",
"
0.575714
\n",
"
0.428571
\n",
"
5.142857
\n",
"
2.428571
\n",
"
0.601429
\n",
"
161.571429
\n",
"
102.857143
\n",
"
2.0
\n",
"
2.0
\n",
"
24.571429
\n",
"
14.142857
\n",
"
10.571429
\n",
"
7.857143
\n",
"
98.571429
\n",
"
32.571429
\n",
"
6.428571
\n",
"
4.285714
\n",
"
61.857143
\n",
"
12.428571
\n",
"
0.000000
\n",
"
29.142857
\n",
"
18.142857
\n",
"
1.142857
\n",
"
0.000000
\n",
"
115.571429
\n",
"
44.714286
\n",
"
0.437143
\n",
"
0.285714
\n",
"
3.285714
\n",
"
0.857143
\n",
"
0.147143
\n",
"
158.142857
\n",
"
82.285714
\n",
"
25.0
\n",
"
1062.00
\n",
"
2.0
\n",
"
0.0
\n",
"
1.0
\n",
"
2.0
\n",
"
0.0
\n",
"
2.0
\n",
"
0.0
\n",
"
5.0
\n",
"
Southpaw
\n",
"
165.10
\n",
"
167.64
\n",
"
125.0
\n",
"
31.0
\n",
"
Red
\n",
"
2019-06-08
\n",
"
Women's Flyweight
\n",
"
True
\n",
"
\n",
"
\n",
"
2
\n",
"
Tony Ferguson
\n",
"
0.0
\n",
"
11.0
\n",
"
0.0
\n",
"
13.866667
\n",
"
8.666667
\n",
"
2.866667
\n",
"
1.733333
\n",
"
116.133333
\n",
"
49.466667
\n",
"
5.333333
\n",
"
4.266667
\n",
"
96.733333
\n",
"
35.60
\n",
"
0.200
\n",
"
13.733333
\n",
"
11.200000
\n",
"
0.333333
\n",
"
0.133333
\n",
"
124.333333
\n",
"
55.466667
\n",
"
0.430000
\n",
"
1.000000
\n",
"
0.933333
\n",
"
0.400000
\n",
"
0.277333
\n",
"
133.000000
\n",
"
63.400000
\n",
"
11.0
\n",
"
1.0
\n",
"
14.466667
\n",
"
8.133333
\n",
"
2.800000
\n",
"
0.733333
\n",
"
91.066667
\n",
"
32.200000
\n",
"
4.866667
\n",
"
2.800000
\n",
"
78.266667
\n",
"
23.200000
\n",
"
0.266667
\n",
"
6.000000
\n",
"
4.400000
\n",
"
0.333333
\n",
"
0.133333
\n",
"
98.733333
\n",
"
35.733333
\n",
"
0.340000
\n",
"
0.066667
\n",
"
2.866667
\n",
"
0.666667
\n",
"
0.131333
\n",
"
102.133333
\n",
"
38.600000
\n",
"
33.0
\n",
"
604.40
\n",
"
2.0
\n",
"
0.0
\n",
"
1.0
\n",
"
3.0
\n",
"
3.0
\n",
"
6.0
\n",
"
1.0
\n",
"
14.0
\n",
"
Orthodox
\n",
"
180.34
\n",
"
193.04
\n",
"
155.0
\n",
"
35.0
\n",
"
Red
\n",
"
2019-06-08
\n",
"
Lightweight
\n",
"
True
\n",
"
\n",
"
\n",
"
3
\n",
"
Jimmie Rivera
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
18.250000
\n",
"
10.250000
\n",
"
5.875000
\n",
"
4.125000
\n",
"
104.875000
\n",
"
41.000000
\n",
"
1.000000
\n",
"
0.625000
\n",
"
80.500000
\n",
"
24.00
\n",
"
0.375
\n",
"
13.000000
\n",
"
11.500000
\n",
"
0.125000
\n",
"
0.000000
\n",
"
111.750000
\n",
"
45.750000
\n",
"
0.366250
\n",
"
0.000000
\n",
"
2.250000
\n",
"
0.625000
\n",
"
0.103750
\n",
"
117.375000
\n",
"
50.750000
\n",
"
5.0
\n",
"
2.0
\n",
"
20.250000
\n",
"
13.375000
\n",
"
6.875000
\n",
"
5.625000
\n",
"
103.125000
\n",
"
38.500000
\n",
"
0.875000
\n",
"
0.750000
\n",
"
77.375000
\n",
"
20.375000
\n",
"
0.125000
\n",
"
13.250000
\n",
"
11.125000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
110.875000
\n",
"
44.875000
\n",
"
0.446250
\n",
"
0.000000
\n",
"
2.375000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
115.125000
\n",
"
48.875000
\n",
"
20.0
\n",
"
690.25
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
4.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
6.0
\n",
"
Orthodox
\n",
"
162.56
\n",
"
172.72
\n",
"
135.0
\n",
"
29.0
\n",
"
Blue
\n",
"
2019-06-08
\n",
"
Bantamweight
\n",
"
False
\n",
"
\n",
"
\n",
"
4
\n",
"
Tai Tuivasa
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.750000
\n",
"
6.750000
\n",
"
11.000000
\n",
"
7.250000
\n",
"
50.750000
\n",
"
24.750000
\n",
"
0.500000
\n",
"
0.500000
\n",
"
50.750000
\n",
"
22.75
\n",
"
0.500
\n",
"
3.750000
\n",
"
3.000000
\n",
"
0.250000
\n",
"
0.000000
\n",
"
62.250000
\n",
"
32.500000
\n",
"
0.545000
\n",
"
0.000000
\n",
"
0.500000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
63.500000
\n",
"
32.750000
\n",
"
3.0
\n",
"
1.0
\n",
"
6.250000
\n",
"
4.750000
\n",
"
4.500000
\n",
"
3.500000
\n",
"
42.750000
\n",
"
16.250000
\n",
"
7.750000
\n",
"
2.750000
\n",
"
43.250000
\n",
"
14.000000
\n",
"
0.250000
\n",
"
5.500000
\n",
"
3.750000
\n",
"
0.750000
\n",
"
0.000000
\n",
"
55.000000
\n",
"
22.500000
\n",
"
0.397500
\n",
"
0.000000
\n",
"
1.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
60.500000
\n",
"
27.750000
\n",
"
7.0
\n",
"
440.75
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
2.0
\n",
"
0.0
\n",
"
0.0
\n",
"
3.0
\n",
"
Southpaw
\n",
"
187.96
\n",
"
190.50
\n",
"
264.0
\n",
"
26.0
\n",
"
Blue
\n",
"
2019-06-08
\n",
"
Heavyweight
\n",
"
False
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
5139
\n",
"
Gerard Gordeau
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
3.000000
\n",
"
1.000000
\n",
"
2.000000
\n",
"
2.000000
\n",
"
5.000000
\n",
"
3.00
\n",
"
0.000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
5.000000
\n",
"
3.000000
\n",
"
0.600000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
5.000000
\n",
"
3.000000
\n",
"
1.0
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
1.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
1.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
1.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
1.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
1.000000
\n",
"
0.000000
\n",
"
1.0
\n",
"
26.00
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
Orthodox
\n",
"
195.58
\n",
"
NaN
\n",
"
216.0
\n",
"
34.0
\n",
"
Red
\n",
"
1993-11-12
\n",
"
Open Weight
\n",
"
True
\n",
"
\n",
"
\n",
"
5140
\n",
"
Ken Shamrock
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
Orthodox
\n",
"
185.42
\n",
"
182.88
\n",
"
205.0
\n",
"
29.0
\n",
"
Red
\n",
"
1993-11-12
\n",
"
Open Weight
\n",
"
True
\n",
"
\n",
"
\n",
"
5141
\n",
"
Royce Gracie
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
Southpaw
\n",
"
185.42
\n",
"
NaN
\n",
"
175.0
\n",
"
26.0
\n",
"
Red
\n",
"
1993-11-12
\n",
"
Open Weight
\n",
"
True
\n",
"
\n",
"
\n",
"
5142
\n",
"
Kevin Rosier
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
Orthodox
\n",
"
193.04
\n",
"
NaN
\n",
"
275.0
\n",
"
NaN
\n",
"
Red
\n",
"
1993-11-12
\n",
"
Open Weight
\n",
"
True
\n",
"
\n",
"
\n",
"
5143
\n",
"
Gerard Gordeau
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
Orthodox
\n",
"
195.58
\n",
"
NaN
\n",
"
216.0
\n",
"
34.0
\n",
"
Red
\n",
"
1993-11-12
\n",
"
Open Weight
\n",
"
True
\n",
"
\n",
" \n",
"
\n",
"
5144 rows × 73 columns
\n",
"
"
],
"text/plain": [
" fighter current_lose_streak current_win_streak draw \\\n",
"0 Henry Cejudo 0.0 4.0 0.0 \n",
"1 Valentina Shevchenko 0.0 2.0 0.0 \n",
"2 Tony Ferguson 0.0 11.0 0.0 \n",
"3 Jimmie Rivera 1.0 0.0 0.0 \n",
"4 Tai Tuivasa 1.0 0.0 0.0 \n",
"... ... ... ... ... \n",
"5139 Gerard Gordeau 0.0 1.0 0.0 \n",
"5140 Ken Shamrock 0.0 0.0 0.0 \n",
"5141 Royce Gracie 0.0 0.0 0.0 \n",
"5142 Kevin Rosier 0.0 0.0 0.0 \n",
"5143 Gerard Gordeau 0.0 0.0 0.0 \n",
"\n",
" avg_BODY_att avg_BODY_landed avg_CLINCH_att avg_CLINCH_landed \\\n",
"0 21.900000 16.400000 17.000000 11.000000 \n",
"1 12.000000 7.714286 9.285714 6.857143 \n",
"2 13.866667 8.666667 2.866667 1.733333 \n",
"3 18.250000 10.250000 5.875000 4.125000 \n",
"4 7.750000 6.750000 11.000000 7.250000 \n",
"... ... ... ... ... \n",
"5139 0.000000 0.000000 0.000000 0.000000 \n",
"5140 NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN \n",
"\n",
" avg_DISTANCE_att avg_DISTANCE_landed avg_GROUND_att \\\n",
"0 75.000000 26.500000 9.400000 \n",
"1 88.142857 36.142857 18.428571 \n",
"2 116.133333 49.466667 5.333333 \n",
"3 104.875000 41.000000 1.000000 \n",
"4 50.750000 24.750000 0.500000 \n",
"... ... ... ... \n",
"5139 3.000000 1.000000 2.000000 \n",
"5140 NaN NaN NaN \n",
"5141 NaN NaN NaN \n",
"5142 NaN NaN NaN \n",
"5143 NaN NaN NaN \n",
"\n",
" avg_GROUND_landed avg_HEAD_att avg_HEAD_landed avg_KD avg_LEG_att \\\n",
"0 6.500000 74.200000 23.90 0.400 5.300000 \n",
"1 16.428571 84.571429 37.00 0.000 19.285714 \n",
"2 4.266667 96.733333 35.60 0.200 13.733333 \n",
"3 0.625000 80.500000 24.00 0.375 13.000000 \n",
"4 0.500000 50.750000 22.75 0.500 3.750000 \n",
"... ... ... ... ... ... \n",
"5139 2.000000 5.000000 3.00 0.000 0.000000 \n",
"5140 NaN NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN NaN \n",
"\n",
" avg_LEG_landed avg_PASS avg_REV avg_SIG_STR_att avg_SIG_STR_landed \\\n",
"0 3.700000 1.200000 0.000000 101.400000 44.000000 \n",
"1 14.714286 1.714286 0.142857 115.857143 59.428571 \n",
"2 11.200000 0.333333 0.133333 124.333333 55.466667 \n",
"3 11.500000 0.125000 0.000000 111.750000 45.750000 \n",
"4 3.000000 0.250000 0.000000 62.250000 32.500000 \n",
"... ... ... ... ... ... \n",
"5139 0.000000 0.000000 0.000000 5.000000 3.000000 \n",
"5140 NaN NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN NaN \n",
"\n",
" avg_SIG_STR_pct avg_SUB_ATT avg_TD_att avg_TD_landed avg_TD_pct \\\n",
"0 0.466000 0.100000 5.300000 1.900000 0.458000 \n",
"1 0.575714 0.428571 5.142857 2.428571 0.601429 \n",
"2 0.430000 1.000000 0.933333 0.400000 0.277333 \n",
"3 0.366250 0.000000 2.250000 0.625000 0.103750 \n",
"4 0.545000 0.000000 0.500000 0.000000 0.000000 \n",
"... ... ... ... ... ... \n",
"5139 0.600000 0.000000 0.000000 0.000000 0.000000 \n",
"5140 NaN NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN NaN \n",
"\n",
" avg_TOTAL_STR_att avg_TOTAL_STR_landed longest_win_streak losses \\\n",
"0 129.900000 69.100000 4.0 2.0 \n",
"1 161.571429 102.857143 2.0 2.0 \n",
"2 133.000000 63.400000 11.0 1.0 \n",
"3 117.375000 50.750000 5.0 2.0 \n",
"4 63.500000 32.750000 3.0 1.0 \n",
"... ... ... ... ... \n",
"5139 5.000000 3.000000 1.0 0.0 \n",
"5140 NaN NaN 0.0 0.0 \n",
"5141 NaN NaN 0.0 0.0 \n",
"5142 NaN NaN 0.0 0.0 \n",
"5143 NaN NaN 0.0 0.0 \n",
"\n",
" avg_opp_BODY_att avg_opp_BODY_landed avg_opp_CLINCH_att \\\n",
"0 13.300000 8.800000 7.500000 \n",
"1 24.571429 14.142857 10.571429 \n",
"2 14.466667 8.133333 2.800000 \n",
"3 20.250000 13.375000 6.875000 \n",
"4 6.250000 4.750000 4.500000 \n",
"... ... ... ... \n",
"5139 0.000000 0.000000 0.000000 \n",
"5140 NaN NaN NaN \n",
"5141 NaN NaN NaN \n",
"5142 NaN NaN NaN \n",
"5143 NaN NaN NaN \n",
"\n",
" avg_opp_CLINCH_landed avg_opp_DISTANCE_att avg_opp_DISTANCE_landed \\\n",
"0 5.100000 90.500000 26.800000 \n",
"1 7.857143 98.571429 32.571429 \n",
"2 0.733333 91.066667 32.200000 \n",
"3 5.625000 103.125000 38.500000 \n",
"4 3.500000 42.750000 16.250000 \n",
"... ... ... ... \n",
"5139 0.000000 1.000000 0.000000 \n",
"5140 NaN NaN NaN \n",
"5141 NaN NaN NaN \n",
"5142 NaN NaN NaN \n",
"5143 NaN NaN NaN \n",
"\n",
" avg_opp_GROUND_att avg_opp_GROUND_landed avg_opp_HEAD_att \\\n",
"0 0.800000 0.300000 76.100000 \n",
"1 6.428571 4.285714 61.857143 \n",
"2 4.866667 2.800000 78.266667 \n",
"3 0.875000 0.750000 77.375000 \n",
"4 7.750000 2.750000 43.250000 \n",
"... ... ... ... \n",
"5139 0.000000 0.000000 1.000000 \n",
"5140 NaN NaN NaN \n",
"5141 NaN NaN NaN \n",
"5142 NaN NaN NaN \n",
"5143 NaN NaN NaN \n",
"\n",
" avg_opp_HEAD_landed avg_opp_KD avg_opp_LEG_att avg_opp_LEG_landed \\\n",
"0 17.300000 0.100000 9.400000 6.100000 \n",
"1 12.428571 0.000000 29.142857 18.142857 \n",
"2 23.200000 0.266667 6.000000 4.400000 \n",
"3 20.375000 0.125000 13.250000 11.125000 \n",
"4 14.000000 0.250000 5.500000 3.750000 \n",
"... ... ... ... ... \n",
"5139 0.000000 0.000000 0.000000 0.000000 \n",
"5140 NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN \n",
"\n",
" avg_opp_PASS avg_opp_REV avg_opp_SIG_STR_att avg_opp_SIG_STR_landed \\\n",
"0 0.000000 0.000000 98.800000 32.200000 \n",
"1 1.142857 0.000000 115.571429 44.714286 \n",
"2 0.333333 0.133333 98.733333 35.733333 \n",
"3 0.000000 0.000000 110.875000 44.875000 \n",
"4 0.750000 0.000000 55.000000 22.500000 \n",
"... ... ... ... ... \n",
"5139 0.000000 0.000000 1.000000 0.000000 \n",
"5140 NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN \n",
"\n",
" avg_opp_SIG_STR_pct avg_opp_SUB_ATT avg_opp_TD_att avg_opp_TD_landed \\\n",
"0 0.336000 0.000000 0.900000 0.100000 \n",
"1 0.437143 0.285714 3.285714 0.857143 \n",
"2 0.340000 0.066667 2.866667 0.666667 \n",
"3 0.446250 0.000000 2.375000 0.000000 \n",
"4 0.397500 0.000000 1.000000 0.000000 \n",
"... ... ... ... ... \n",
"5139 0.000000 0.000000 1.000000 0.000000 \n",
"5140 NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN \n",
"\n",
" avg_opp_TD_pct avg_opp_TOTAL_STR_att avg_opp_TOTAL_STR_landed \\\n",
"0 0.050000 110.500000 43.300000 \n",
"1 0.147143 158.142857 82.285714 \n",
"2 0.131333 102.133333 38.600000 \n",
"3 0.000000 115.125000 48.875000 \n",
"4 0.000000 60.500000 27.750000 \n",
"... ... ... ... \n",
"5139 0.000000 1.000000 0.000000 \n",
"5140 NaN NaN NaN \n",
"5141 NaN NaN NaN \n",
"5142 NaN NaN NaN \n",
"5143 NaN NaN NaN \n",
"\n",
" total_rounds_fought total_time_fought(seconds) total_title_bouts \\\n",
"0 27.0 742.60 3.0 \n",
"1 25.0 1062.00 2.0 \n",
"2 33.0 604.40 2.0 \n",
"3 20.0 690.25 0.0 \n",
"4 7.0 440.75 0.0 \n",
"... ... ... ... \n",
"5139 1.0 26.00 0.0 \n",
"5140 0.0 NaN 0.0 \n",
"5141 0.0 NaN 0.0 \n",
"5142 0.0 NaN 0.0 \n",
"5143 0.0 NaN 0.0 \n",
"\n",
" win_by_Decision_Majority win_by_Decision_Split \\\n",
"0 0.0 2.0 \n",
"1 0.0 1.0 \n",
"2 0.0 1.0 \n",
"3 0.0 1.0 \n",
"4 0.0 0.0 \n",
"... ... ... \n",
"5139 0.0 0.0 \n",
"5140 0.0 0.0 \n",
"5141 0.0 0.0 \n",
"5142 0.0 0.0 \n",
"5143 0.0 0.0 \n",
"\n",
" win_by_Decision_Unanimous win_by_KO/TKO win_by_Submission \\\n",
"0 4.0 2.0 0.0 \n",
"1 2.0 0.0 2.0 \n",
"2 3.0 3.0 6.0 \n",
"3 4.0 1.0 0.0 \n",
"4 1.0 2.0 0.0 \n",
"... ... ... ... \n",
"5139 0.0 1.0 0.0 \n",
"5140 0.0 0.0 0.0 \n",
"5141 0.0 0.0 0.0 \n",
"5142 0.0 0.0 0.0 \n",
"5143 0.0 0.0 0.0 \n",
"\n",
" win_by_TKO_Doctor_Stoppage wins Stance Height_cms each_cms \\\n",
"0 0.0 8.0 Orthodox 162.56 162.56 \n",
"1 0.0 5.0 Southpaw 165.10 167.64 \n",
"2 1.0 14.0 Orthodox 180.34 193.04 \n",
"3 0.0 6.0 Orthodox 162.56 172.72 \n",
"4 0.0 3.0 Southpaw 187.96 190.50 \n",
"... ... ... ... ... ... \n",
"5139 0.0 1.0 Orthodox 195.58 NaN \n",
"5140 0.0 0.0 Orthodox 185.42 182.88 \n",
"5141 0.0 0.0 Southpaw 185.42 NaN \n",
"5142 0.0 0.0 Orthodox 193.04 NaN \n",
"5143 0.0 0.0 Orthodox 195.58 NaN \n",
"\n",
" Weight_lbs age Winner date weight_class is_winner \n",
"0 135.0 32.0 Red 2019-06-08 Bantamweight True \n",
"1 125.0 31.0 Red 2019-06-08 Women's Flyweight True \n",
"2 155.0 35.0 Red 2019-06-08 Lightweight True \n",
"3 135.0 29.0 Blue 2019-06-08 Bantamweight False \n",
"4 264.0 26.0 Blue 2019-06-08 Heavyweight False \n",
"... ... ... ... ... ... ... \n",
"5139 216.0 34.0 Red 1993-11-12 Open Weight True \n",
"5140 205.0 29.0 Red 1993-11-12 Open Weight True \n",
"5141 175.0 26.0 Red 1993-11-12 Open Weight True \n",
"5142 275.0 NaN Red 1993-11-12 Open Weight True \n",
"5143 216.0 34.0 Red 1993-11-12 Open Weight True \n",
"\n",
"[5144 rows x 73 columns]"
]
},
"metadata": {
"tags": []
},
"execution_count": 169
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "dXz5-Vid8Bxn",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 695
},
"outputId": "1e05894c-37e9-4687-89f9-82f43bcde0b3"
},
"source": [
"blue_df = dat_df[blue]\n",
"blue_df[\"is_winner\"] = blue_df[\"Winner\"] == \"Blue\"\n",
"blue_df.columns = [s.strip(\"B_\") for s in blue_df.columns]\n",
"blue_df"
],
"execution_count": 170,
"outputs": [
{
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" \n"
],
"name": "stderr"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
fighter
\n",
"
current_lose_streak
\n",
"
current_win_streak
\n",
"
draw
\n",
"
avg_BODY_att
\n",
"
avg_BODY_landed
\n",
"
avg_CLINCH_att
\n",
"
avg_CLINCH_landed
\n",
"
avg_DISTANCE_att
\n",
"
avg_DISTANCE_landed
\n",
"
avg_GROUND_att
\n",
"
avg_GROUND_landed
\n",
"
avg_HEAD_att
\n",
"
avg_HEAD_landed
\n",
"
avg_KD
\n",
"
avg_LEG_att
\n",
"
avg_LEG_landed
\n",
"
avg_PASS
\n",
"
avg_REV
\n",
"
avg_SIG_STR_att
\n",
"
avg_SIG_STR_landed
\n",
"
avg_SIG_STR_pct
\n",
"
avg_SUB_ATT
\n",
"
avg_TD_att
\n",
"
avg_TD_landed
\n",
"
avg_TD_pct
\n",
"
avg_TOTAL_STR_att
\n",
"
avg_TOTAL_STR_landed
\n",
"
longest_win_streak
\n",
"
losses
\n",
"
avg_opp_BODY_att
\n",
"
avg_opp_BODY_landed
\n",
"
avg_opp_CLINCH_att
\n",
"
avg_opp_CLINCH_landed
\n",
"
avg_opp_DISTANCE_att
\n",
"
avg_opp_DISTANCE_landed
\n",
"
avg_opp_GROUND_att
\n",
"
avg_opp_GROUND_landed
\n",
"
avg_opp_HEAD_att
\n",
"
avg_opp_HEAD_landed
\n",
"
avg_opp_KD
\n",
"
avg_opp_LEG_att
\n",
"
avg_opp_LEG_landed
\n",
"
avg_opp_PASS
\n",
"
avg_opp_REV
\n",
"
avg_opp_SIG_STR_att
\n",
"
avg_opp_SIG_STR_landed
\n",
"
avg_opp_SIG_STR_pct
\n",
"
avg_opp_SUB_ATT
\n",
"
avg_opp_TD_att
\n",
"
avg_opp_TD_landed
\n",
"
avg_opp_TD_pct
\n",
"
avg_opp_TOTAL_STR_att
\n",
"
avg_opp_TOTAL_STR_landed
\n",
"
total_rounds_fought
\n",
"
total_time_fought(seconds)
\n",
"
total_title_bouts
\n",
"
win_by_Decision_Majority
\n",
"
win_by_Decision_Split
\n",
"
win_by_Decision_Unanimous
\n",
"
win_by_KO/TKO
\n",
"
win_by_Submission
\n",
"
win_by_TKO_Doctor_Stoppage
\n",
"
wins
\n",
"
Stance
\n",
"
Height_cms
\n",
"
Reach_cms
\n",
"
Weight_lbs
\n",
"
age
\n",
"
Winner
\n",
"
date
\n",
"
weight_class
\n",
"
is_winner
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Marlon Moraes
\n",
"
0.0
\n",
"
4.0
\n",
"
0.0
\n",
"
9.200000
\n",
"
6.000000
\n",
"
0.200000
\n",
"
0.000000
\n",
"
62.600000
\n",
"
20.600000
\n",
"
2.600000
\n",
"
2.000000
\n",
"
48.600000
\n",
"
11.200000
\n",
"
0.800000
\n",
"
7.6
\n",
"
5.400000
\n",
"
0.400000
\n",
"
0.000000
\n",
"
65.40
\n",
"
22.600000
\n",
"
0.466000
\n",
"
0.400000
\n",
"
0.80000
\n",
"
0.200000
\n",
"
0.100000
\n",
"
66.400000
\n",
"
23.600000
\n",
"
4.0
\n",
"
1.0
\n",
"
6.400000
\n",
"
4.000000
\n",
"
1.000000
\n",
"
0.60000
\n",
"
51.200000
\n",
"
17.400000
\n",
"
0.600000
\n",
"
0.200000
\n",
"
39.600000
\n",
"
9.400000
\n",
"
0.200000
\n",
"
6.80000
\n",
"
4.800000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
52.800000
\n",
"
18.20000
\n",
"
0.236000
\n",
"
0.000000
\n",
"
1.000000
\n",
"
0.400000
\n",
"
0.100000
\n",
"
53.800000
\n",
"
19.200000
\n",
"
9.0
\n",
"
419.400000
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
2.0
\n",
"
1.0
\n",
"
0.0
\n",
"
4.0
\n",
"
Orthodox
\n",
"
167.64
\n",
"
170.18
\n",
"
135.0
\n",
"
31.0
\n",
"
Red
\n",
"
2019-06-08
\n",
"
Bantamweight
\n",
"
False
\n",
"
\n",
"
\n",
"
1
\n",
"
Jessica Eye
\n",
"
0.0
\n",
"
3.0
\n",
"
0.0
\n",
"
14.600000
\n",
"
9.100000
\n",
"
11.800000
\n",
"
7.300000
\n",
"
124.700000
\n",
"
42.100000
\n",
"
2.400000
\n",
"
1.900000
\n",
"
112.000000
\n",
"
32.000000
\n",
"
0.000000
\n",
"
12.3
\n",
"
10.200000
\n",
"
0.800000
\n",
"
0.000000
\n",
"
138.90
\n",
"
51.300000
\n",
"
0.399000
\n",
"
0.700000
\n",
"
1.00000
\n",
"
0.500000
\n",
"
0.225000
\n",
"
158.700000
\n",
"
69.600000
\n",
"
3.0
\n",
"
6.0
\n",
"
13.000000
\n",
"
9.300000
\n",
"
12.800000
\n",
"
9.60000
\n",
"
101.700000
\n",
"
32.000000
\n",
"
8.100000
\n",
"
6.900000
\n",
"
97.700000
\n",
"
30.800000
\n",
"
0.100000
\n",
"
11.90000
\n",
"
8.400000
\n",
"
1.400000
\n",
"
0.000000
\n",
"
122.600000
\n",
"
48.50000
\n",
"
0.408000
\n",
"
0.700000
\n",
"
2.300000
\n",
"
0.900000
\n",
"
0.231000
\n",
"
151.500000
\n",
"
75.400000
\n",
"
29.0
\n",
"
849.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
2.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
4.0
\n",
"
Orthodox
\n",
"
167.64
\n",
"
167.64
\n",
"
125.0
\n",
"
32.0
\n",
"
Red
\n",
"
2019-06-08
\n",
"
Women's Flyweight
\n",
"
False
\n",
"
\n",
"
\n",
"
2
\n",
"
Donald Cerrone
\n",
"
0.0
\n",
"
3.0
\n",
"
0.0
\n",
"
15.354839
\n",
"
11.322581
\n",
"
6.741935
\n",
"
4.387097
\n",
"
84.741935
\n",
"
38.580645
\n",
"
5.516129
\n",
"
3.806452
\n",
"
67.645161
\n",
"
23.258065
\n",
"
0.645161
\n",
"
14.0
\n",
"
12.193548
\n",
"
0.935484
\n",
"
0.096774
\n",
"
97.00
\n",
"
46.774194
\n",
"
0.496129
\n",
"
0.354839
\n",
"
2.16129
\n",
"
0.677419
\n",
"
0.295484
\n",
"
103.709677
\n",
"
52.548387
\n",
"
8.0
\n",
"
8.0
\n",
"
17.903226
\n",
"
11.870968
\n",
"
8.419355
\n",
"
5.83871
\n",
"
84.548387
\n",
"
38.064516
\n",
"
1.741935
\n",
"
0.935484
\n",
"
67.645161
\n",
"
25.483871
\n",
"
0.225806
\n",
"
9.16129
\n",
"
7.483871
\n",
"
0.032258
\n",
"
0.032258
\n",
"
94.709677
\n",
"
44.83871
\n",
"
0.453226
\n",
"
0.096774
\n",
"
2.096774
\n",
"
0.225806
\n",
"
0.063548
\n",
"
100.387097
\n",
"
49.774194
\n",
"
68.0
\n",
"
581.870968
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.0
\n",
"
10.0
\n",
"
6.0
\n",
"
0.0
\n",
"
23.0
\n",
"
Orthodox
\n",
"
185.42
\n",
"
185.42
\n",
"
155.0
\n",
"
36.0
\n",
"
Red
\n",
"
2019-06-08
\n",
"
Lightweight
\n",
"
False
\n",
"
\n",
"
\n",
"
3
\n",
"
Petr Yan
\n",
"
0.0
\n",
"
4.0
\n",
"
0.0
\n",
"
17.000000
\n",
"
14.000000
\n",
"
13.750000
\n",
"
11.000000
\n",
"
109.500000
\n",
"
48.750000
\n",
"
13.000000
\n",
"
10.500000
\n",
"
116.250000
\n",
"
53.750000
\n",
"
0.500000
\n",
"
3.0
\n",
"
2.500000
\n",
"
0.500000
\n",
"
0.250000
\n",
"
136.25
\n",
"
70.250000
\n",
"
0.550000
\n",
"
0.250000
\n",
"
2.50000
\n",
"
1.250000
\n",
"
0.287500
\n",
"
154.750000
\n",
"
86.750000
\n",
"
4.0
\n",
"
0.0
\n",
"
12.250000
\n",
"
6.000000
\n",
"
6.000000
\n",
"
3.75000
\n",
"
94.250000
\n",
"
26.750000
\n",
"
1.750000
\n",
"
1.250000
\n",
"
82.500000
\n",
"
21.500000
\n",
"
0.250000
\n",
"
7.25000
\n",
"
4.250000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
102.000000
\n",
"
31.75000
\n",
"
0.337500
\n",
"
0.000000
\n",
"
4.500000
\n",
"
0.750000
\n",
"
0.097500
\n",
"
104.750000
\n",
"
34.250000
\n",
"
9.0
\n",
"
652.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
2.0
\n",
"
2.0
\n",
"
0.0
\n",
"
0.0
\n",
"
4.0
\n",
"
Switch
\n",
"
170.18
\n",
"
170.18
\n",
"
135.0
\n",
"
26.0
\n",
"
Blue
\n",
"
2019-06-08
\n",
"
Bantamweight
\n",
"
True
\n",
"
\n",
"
\n",
"
4
\n",
"
Blagoy Ivanov
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
17.000000
\n",
"
14.500000
\n",
"
2.500000
\n",
"
2.000000
\n",
"
201.000000
\n",
"
59.500000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
184.500000
\n",
"
45.000000
\n",
"
0.000000
\n",
"
2.0
\n",
"
2.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
203.50
\n",
"
61.500000
\n",
"
0.310000
\n",
"
0.000000
\n",
"
0.00000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
204.000000
\n",
"
62.000000
\n",
"
1.0
\n",
"
1.0
\n",
"
42.500000
\n",
"
23.500000
\n",
"
0.500000
\n",
"
0.50000
\n",
"
205.000000
\n",
"
89.500000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
152.500000
\n",
"
56.500000
\n",
"
0.000000
\n",
"
10.50000
\n",
"
10.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
205.500000
\n",
"
90.00000
\n",
"
0.430000
\n",
"
0.000000
\n",
"
0.500000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
205.500000
\n",
"
90.000000
\n",
"
8.0
\n",
"
1200.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
Southpaw
\n",
"
180.34
\n",
"
185.42
\n",
"
250.0
\n",
"
32.0
\n",
"
Blue
\n",
"
2019-06-08
\n",
"
Heavyweight
\n",
"
True
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
5139
\n",
"
Kevin Rosier
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
4.000000
\n",
"
3.000000
\n",
"
9.000000
\n",
"
4.000000
\n",
"
10.000000
\n",
"
4.000000
\n",
"
8.000000
\n",
"
7.000000
\n",
"
23.000000
\n",
"
12.000000
\n",
"
2.000000
\n",
"
0.0
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
27.00
\n",
"
15.000000
\n",
"
0.550000
\n",
"
0.000000
\n",
"
0.00000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
53.000000
\n",
"
38.000000
\n",
"
1.0
\n",
"
0.0
\n",
"
6.000000
\n",
"
3.000000
\n",
"
19.000000
\n",
"
10.00000
\n",
"
7.000000
\n",
"
0.000000
\n",
"
2.000000
\n",
"
2.000000
\n",
"
19.000000
\n",
"
7.000000
\n",
"
0.000000
\n",
"
3.00000
\n",
"
2.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
28.000000
\n",
"
12.00000
\n",
"
0.420000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
29.000000
\n",
"
13.000000
\n",
"
1.0
\n",
"
260.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
Orthodox
\n",
"
193.04
\n",
"
NaN
\n",
"
275.0
\n",
"
NaN
\n",
"
Red
\n",
"
1993-11-12
\n",
"
Open Weight
\n",
"
False
\n",
"
\n",
"
\n",
"
5140
\n",
"
Patrick Smith
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
Orthodox
\n",
"
187.96
\n",
"
NaN
\n",
"
225.0
\n",
"
30.0
\n",
"
Red
\n",
"
1993-11-12
\n",
"
Open Weight
\n",
"
False
\n",
"
\n",
"
\n",
"
5141
\n",
"
Art Jimmerson
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
Orthodox
\n",
"
185.42
\n",
"
NaN
\n",
"
196.0
\n",
"
30.0
\n",
"
Red
\n",
"
1993-11-12
\n",
"
Open Weight
\n",
"
False
\n",
"
\n",
"
\n",
"
5142
\n",
"
Zane Frazier
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
Orthodox
\n",
"
195.58
\n",
"
NaN
\n",
"
250.0
\n",
"
NaN
\n",
"
Red
\n",
"
1993-11-12
\n",
"
Open Weight
\n",
"
False
\n",
"
\n",
"
\n",
"
5143
\n",
"
Teila Tuli
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
Orthodox
\n",
"
182.88
\n",
"
NaN
\n",
"
430.0
\n",
"
24.0
\n",
"
Red
\n",
"
1993-11-12
\n",
"
Open Weight
\n",
"
False
\n",
"
\n",
" \n",
"
\n",
"
5144 rows × 73 columns
\n",
"
"
],
"text/plain": [
" fighter current_lose_streak current_win_streak draw \\\n",
"0 Marlon Moraes 0.0 4.0 0.0 \n",
"1 Jessica Eye 0.0 3.0 0.0 \n",
"2 Donald Cerrone 0.0 3.0 0.0 \n",
"3 Petr Yan 0.0 4.0 0.0 \n",
"4 Blagoy Ivanov 0.0 1.0 0.0 \n",
"... ... ... ... ... \n",
"5139 Kevin Rosier 0.0 1.0 0.0 \n",
"5140 Patrick Smith 0.0 0.0 0.0 \n",
"5141 Art Jimmerson 0.0 0.0 0.0 \n",
"5142 Zane Frazier 0.0 0.0 0.0 \n",
"5143 Teila Tuli 0.0 0.0 0.0 \n",
"\n",
" avg_BODY_att avg_BODY_landed avg_CLINCH_att avg_CLINCH_landed \\\n",
"0 9.200000 6.000000 0.200000 0.000000 \n",
"1 14.600000 9.100000 11.800000 7.300000 \n",
"2 15.354839 11.322581 6.741935 4.387097 \n",
"3 17.000000 14.000000 13.750000 11.000000 \n",
"4 17.000000 14.500000 2.500000 2.000000 \n",
"... ... ... ... ... \n",
"5139 4.000000 3.000000 9.000000 4.000000 \n",
"5140 NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN \n",
"\n",
" avg_DISTANCE_att avg_DISTANCE_landed avg_GROUND_att \\\n",
"0 62.600000 20.600000 2.600000 \n",
"1 124.700000 42.100000 2.400000 \n",
"2 84.741935 38.580645 5.516129 \n",
"3 109.500000 48.750000 13.000000 \n",
"4 201.000000 59.500000 0.000000 \n",
"... ... ... ... \n",
"5139 10.000000 4.000000 8.000000 \n",
"5140 NaN NaN NaN \n",
"5141 NaN NaN NaN \n",
"5142 NaN NaN NaN \n",
"5143 NaN NaN NaN \n",
"\n",
" avg_GROUND_landed avg_HEAD_att avg_HEAD_landed avg_KD avg_LEG_att \\\n",
"0 2.000000 48.600000 11.200000 0.800000 7.6 \n",
"1 1.900000 112.000000 32.000000 0.000000 12.3 \n",
"2 3.806452 67.645161 23.258065 0.645161 14.0 \n",
"3 10.500000 116.250000 53.750000 0.500000 3.0 \n",
"4 0.000000 184.500000 45.000000 0.000000 2.0 \n",
"... ... ... ... ... ... \n",
"5139 7.000000 23.000000 12.000000 2.000000 0.0 \n",
"5140 NaN NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN NaN \n",
"\n",
" avg_LEG_landed avg_PASS avg_REV avg_SIG_STR_att avg_SIG_STR_landed \\\n",
"0 5.400000 0.400000 0.000000 65.40 22.600000 \n",
"1 10.200000 0.800000 0.000000 138.90 51.300000 \n",
"2 12.193548 0.935484 0.096774 97.00 46.774194 \n",
"3 2.500000 0.500000 0.250000 136.25 70.250000 \n",
"4 2.000000 0.000000 0.000000 203.50 61.500000 \n",
"... ... ... ... ... ... \n",
"5139 0.000000 0.000000 0.000000 27.00 15.000000 \n",
"5140 NaN NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN NaN \n",
"\n",
" avg_SIG_STR_pct avg_SUB_ATT avg_TD_att avg_TD_landed avg_TD_pct \\\n",
"0 0.466000 0.400000 0.80000 0.200000 0.100000 \n",
"1 0.399000 0.700000 1.00000 0.500000 0.225000 \n",
"2 0.496129 0.354839 2.16129 0.677419 0.295484 \n",
"3 0.550000 0.250000 2.50000 1.250000 0.287500 \n",
"4 0.310000 0.000000 0.00000 0.000000 0.000000 \n",
"... ... ... ... ... ... \n",
"5139 0.550000 0.000000 0.00000 0.000000 0.000000 \n",
"5140 NaN NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN NaN \n",
"\n",
" avg_TOTAL_STR_att avg_TOTAL_STR_landed longest_win_streak losses \\\n",
"0 66.400000 23.600000 4.0 1.0 \n",
"1 158.700000 69.600000 3.0 6.0 \n",
"2 103.709677 52.548387 8.0 8.0 \n",
"3 154.750000 86.750000 4.0 0.0 \n",
"4 204.000000 62.000000 1.0 1.0 \n",
"... ... ... ... ... \n",
"5139 53.000000 38.000000 1.0 0.0 \n",
"5140 NaN NaN 0.0 0.0 \n",
"5141 NaN NaN 0.0 0.0 \n",
"5142 NaN NaN 0.0 0.0 \n",
"5143 NaN NaN 0.0 0.0 \n",
"\n",
" avg_opp_BODY_att avg_opp_BODY_landed avg_opp_CLINCH_att \\\n",
"0 6.400000 4.000000 1.000000 \n",
"1 13.000000 9.300000 12.800000 \n",
"2 17.903226 11.870968 8.419355 \n",
"3 12.250000 6.000000 6.000000 \n",
"4 42.500000 23.500000 0.500000 \n",
"... ... ... ... \n",
"5139 6.000000 3.000000 19.000000 \n",
"5140 NaN NaN NaN \n",
"5141 NaN NaN NaN \n",
"5142 NaN NaN NaN \n",
"5143 NaN NaN NaN \n",
"\n",
" avg_opp_CLINCH_landed avg_opp_DISTANCE_att avg_opp_DISTANCE_landed \\\n",
"0 0.60000 51.200000 17.400000 \n",
"1 9.60000 101.700000 32.000000 \n",
"2 5.83871 84.548387 38.064516 \n",
"3 3.75000 94.250000 26.750000 \n",
"4 0.50000 205.000000 89.500000 \n",
"... ... ... ... \n",
"5139 10.00000 7.000000 0.000000 \n",
"5140 NaN NaN NaN \n",
"5141 NaN NaN NaN \n",
"5142 NaN NaN NaN \n",
"5143 NaN NaN NaN \n",
"\n",
" avg_opp_GROUND_att avg_opp_GROUND_landed avg_opp_HEAD_att \\\n",
"0 0.600000 0.200000 39.600000 \n",
"1 8.100000 6.900000 97.700000 \n",
"2 1.741935 0.935484 67.645161 \n",
"3 1.750000 1.250000 82.500000 \n",
"4 0.000000 0.000000 152.500000 \n",
"... ... ... ... \n",
"5139 2.000000 2.000000 19.000000 \n",
"5140 NaN NaN NaN \n",
"5141 NaN NaN NaN \n",
"5142 NaN NaN NaN \n",
"5143 NaN NaN NaN \n",
"\n",
" avg_opp_HEAD_landed avg_opp_KD avg_opp_LEG_att avg_opp_LEG_landed \\\n",
"0 9.400000 0.200000 6.80000 4.800000 \n",
"1 30.800000 0.100000 11.90000 8.400000 \n",
"2 25.483871 0.225806 9.16129 7.483871 \n",
"3 21.500000 0.250000 7.25000 4.250000 \n",
"4 56.500000 0.000000 10.50000 10.000000 \n",
"... ... ... ... ... \n",
"5139 7.000000 0.000000 3.00000 2.000000 \n",
"5140 NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN \n",
"\n",
" avg_opp_PASS avg_opp_REV avg_opp_SIG_STR_att avg_opp_SIG_STR_landed \\\n",
"0 0.000000 0.000000 52.800000 18.20000 \n",
"1 1.400000 0.000000 122.600000 48.50000 \n",
"2 0.032258 0.032258 94.709677 44.83871 \n",
"3 0.000000 0.000000 102.000000 31.75000 \n",
"4 0.000000 0.000000 205.500000 90.00000 \n",
"... ... ... ... ... \n",
"5139 0.000000 0.000000 28.000000 12.00000 \n",
"5140 NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN \n",
"\n",
" avg_opp_SIG_STR_pct avg_opp_SUB_ATT avg_opp_TD_att avg_opp_TD_landed \\\n",
"0 0.236000 0.000000 1.000000 0.400000 \n",
"1 0.408000 0.700000 2.300000 0.900000 \n",
"2 0.453226 0.096774 2.096774 0.225806 \n",
"3 0.337500 0.000000 4.500000 0.750000 \n",
"4 0.430000 0.000000 0.500000 0.000000 \n",
"... ... ... ... ... \n",
"5139 0.420000 0.000000 0.000000 0.000000 \n",
"5140 NaN NaN NaN NaN \n",
"5141 NaN NaN NaN NaN \n",
"5142 NaN NaN NaN NaN \n",
"5143 NaN NaN NaN NaN \n",
"\n",
" avg_opp_TD_pct avg_opp_TOTAL_STR_att avg_opp_TOTAL_STR_landed \\\n",
"0 0.100000 53.800000 19.200000 \n",
"1 0.231000 151.500000 75.400000 \n",
"2 0.063548 100.387097 49.774194 \n",
"3 0.097500 104.750000 34.250000 \n",
"4 0.000000 205.500000 90.000000 \n",
"... ... ... ... \n",
"5139 0.000000 29.000000 13.000000 \n",
"5140 NaN NaN NaN \n",
"5141 NaN NaN NaN \n",
"5142 NaN NaN NaN \n",
"5143 NaN NaN NaN \n",
"\n",
" total_rounds_fought total_time_fought(seconds) total_title_bouts \\\n",
"0 9.0 419.400000 0.0 \n",
"1 29.0 849.000000 0.0 \n",
"2 68.0 581.870968 1.0 \n",
"3 9.0 652.000000 0.0 \n",
"4 8.0 1200.000000 0.0 \n",
"... ... ... ... \n",
"5139 1.0 260.000000 0.0 \n",
"5140 0.0 NaN 0.0 \n",
"5141 0.0 NaN 0.0 \n",
"5142 0.0 NaN 0.0 \n",
"5143 0.0 NaN 0.0 \n",
"\n",
" win_by_Decision_Majority win_by_Decision_Split \\\n",
"0 0.0 1.0 \n",
"1 0.0 2.0 \n",
"2 0.0 0.0 \n",
"3 0.0 0.0 \n",
"4 0.0 0.0 \n",
"... ... ... \n",
"5139 0.0 0.0 \n",
"5140 0.0 0.0 \n",
"5141 0.0 0.0 \n",
"5142 0.0 0.0 \n",
"5143 0.0 0.0 \n",
"\n",
" win_by_Decision_Unanimous win_by_KO/TKO win_by_Submission \\\n",
"0 0.0 2.0 1.0 \n",
"1 1.0 0.0 0.0 \n",
"2 7.0 10.0 6.0 \n",
"3 2.0 2.0 0.0 \n",
"4 1.0 0.0 0.0 \n",
"... ... ... ... \n",
"5139 0.0 1.0 0.0 \n",
"5140 0.0 0.0 0.0 \n",
"5141 0.0 0.0 0.0 \n",
"5142 0.0 0.0 0.0 \n",
"5143 0.0 0.0 0.0 \n",
"\n",
" win_by_TKO_Doctor_Stoppage wins Stance Height_cms Reach_cms \\\n",
"0 0.0 4.0 Orthodox 167.64 170.18 \n",
"1 1.0 4.0 Orthodox 167.64 167.64 \n",
"2 0.0 23.0 Orthodox 185.42 185.42 \n",
"3 0.0 4.0 Switch 170.18 170.18 \n",
"4 0.0 1.0 Southpaw 180.34 185.42 \n",
"... ... ... ... ... ... \n",
"5139 0.0 1.0 Orthodox 193.04 NaN \n",
"5140 0.0 0.0 Orthodox 187.96 NaN \n",
"5141 0.0 0.0 Orthodox 185.42 NaN \n",
"5142 0.0 0.0 Orthodox 195.58 NaN \n",
"5143 0.0 0.0 Orthodox 182.88 NaN \n",
"\n",
" Weight_lbs age Winner date weight_class is_winner \n",
"0 135.0 31.0 Red 2019-06-08 Bantamweight False \n",
"1 125.0 32.0 Red 2019-06-08 Women's Flyweight False \n",
"2 155.0 36.0 Red 2019-06-08 Lightweight False \n",
"3 135.0 26.0 Blue 2019-06-08 Bantamweight True \n",
"4 250.0 32.0 Blue 2019-06-08 Heavyweight True \n",
"... ... ... ... ... ... ... \n",
"5139 275.0 NaN Red 1993-11-12 Open Weight False \n",
"5140 225.0 30.0 Red 1993-11-12 Open Weight False \n",
"5141 196.0 30.0 Red 1993-11-12 Open Weight False \n",
"5142 250.0 NaN Red 1993-11-12 Open Weight False \n",
"5143 430.0 24.0 Red 1993-11-12 Open Weight False \n",
"\n",
"[5144 rows x 73 columns]"
]
},
"metadata": {
"tags": []
},
"execution_count": 170
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "MYKjNP-0907E",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 730
},
"outputId": "b184256c-6886-4051-dc8e-f21718fbcd3d"
},
"source": [
"fighters_df = pd.concat([red_df, blue_df])\n",
"fighters_df = fighters_df.reset_index()\n",
"fighters_df"
],
"execution_count": 171,
"outputs": [
{
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n",
"of pandas will change to not sort by default.\n",
"\n",
"To accept the future behavior, pass 'sort=False'.\n",
"\n",
"To retain the current behavior and silence the warning, pass 'sort=True'.\n",
"\n",
" \"\"\"Entry point for launching an IPython kernel.\n"
],
"name": "stderr"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
index
\n",
"
Height_cms
\n",
"
Reach_cms
\n",
"
Stance
\n",
"
Weight_lbs
\n",
"
Winner
\n",
"
age
\n",
"
avg_BODY_att
\n",
"
avg_BODY_landed
\n",
"
avg_CLINCH_att
\n",
"
avg_CLINCH_landed
\n",
"
avg_DISTANCE_att
\n",
"
avg_DISTANCE_landed
\n",
"
avg_GROUND_att
\n",
"
avg_GROUND_landed
\n",
"
avg_HEAD_att
\n",
"
avg_HEAD_landed
\n",
"
avg_KD
\n",
"
avg_LEG_att
\n",
"
avg_LEG_landed
\n",
"
avg_PASS
\n",
"
avg_REV
\n",
"
avg_SIG_STR_att
\n",
"
avg_SIG_STR_landed
\n",
"
avg_SIG_STR_pct
\n",
"
avg_SUB_ATT
\n",
"
avg_TD_att
\n",
"
avg_TD_landed
\n",
"
avg_TD_pct
\n",
"
avg_TOTAL_STR_att
\n",
"
avg_TOTAL_STR_landed
\n",
"
avg_opp_BODY_att
\n",
"
avg_opp_BODY_landed
\n",
"
avg_opp_CLINCH_att
\n",
"
avg_opp_CLINCH_landed
\n",
"
avg_opp_DISTANCE_att
\n",
"
avg_opp_DISTANCE_landed
\n",
"
avg_opp_GROUND_att
\n",
"
avg_opp_GROUND_landed
\n",
"
avg_opp_HEAD_att
\n",
"
avg_opp_HEAD_landed
\n",
"
avg_opp_KD
\n",
"
avg_opp_LEG_att
\n",
"
avg_opp_LEG_landed
\n",
"
avg_opp_PASS
\n",
"
avg_opp_REV
\n",
"
avg_opp_SIG_STR_att
\n",
"
avg_opp_SIG_STR_landed
\n",
"
avg_opp_SIG_STR_pct
\n",
"
avg_opp_SUB_ATT
\n",
"
avg_opp_TD_att
\n",
"
avg_opp_TD_landed
\n",
"
avg_opp_TD_pct
\n",
"
avg_opp_TOTAL_STR_att
\n",
"
avg_opp_TOTAL_STR_landed
\n",
"
current_lose_streak
\n",
"
current_win_streak
\n",
"
date
\n",
"
draw
\n",
"
each_cms
\n",
"
fighter
\n",
"
is_winner
\n",
"
longest_win_streak
\n",
"
losses
\n",
"
total_rounds_fought
\n",
"
total_time_fought(seconds)
\n",
"
total_title_bouts
\n",
"
weight_class
\n",
"
win_by_Decision_Majority
\n",
"
win_by_Decision_Split
\n",
"
win_by_Decision_Unanimous
\n",
"
win_by_KO/TKO
\n",
"
win_by_Submission
\n",
"
win_by_TKO_Doctor_Stoppage
\n",
"
wins
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
0
\n",
"
162.56
\n",
"
NaN
\n",
"
Orthodox
\n",
"
135.0
\n",
"
Red
\n",
"
32.0
\n",
"
21.900000
\n",
"
16.400000
\n",
"
17.000000
\n",
"
11.000000
\n",
"
75.000000
\n",
"
26.500000
\n",
"
9.400000
\n",
"
6.500000
\n",
"
74.200000
\n",
"
23.90
\n",
"
0.400
\n",
"
5.300000
\n",
"
3.700000
\n",
"
1.200000
\n",
"
0.000000
\n",
"
101.400000
\n",
"
44.000000
\n",
"
0.466000
\n",
"
0.100000
\n",
"
5.300000
\n",
"
1.900000
\n",
"
0.458000
\n",
"
129.900000
\n",
"
69.100000
\n",
"
13.300000
\n",
"
8.800000
\n",
"
7.500000
\n",
"
5.100000
\n",
"
90.500000
\n",
"
26.800000
\n",
"
0.800000
\n",
"
0.300000
\n",
"
76.100000
\n",
"
17.300000
\n",
"
0.100000
\n",
"
9.400000
\n",
"
6.100000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
98.800000
\n",
"
32.200000
\n",
"
0.336000
\n",
"
0.000000
\n",
"
0.900000
\n",
"
0.100000
\n",
"
0.050000
\n",
"
110.500000
\n",
"
43.300000
\n",
"
0.0
\n",
"
4.0
\n",
"
2019-06-08
\n",
"
0.0
\n",
"
162.56
\n",
"
Henry Cejudo
\n",
"
True
\n",
"
4.0
\n",
"
2.0
\n",
"
27.0
\n",
"
742.60
\n",
"
3.0
\n",
"
Bantamweight
\n",
"
0.0
\n",
"
2.0
\n",
"
4.0
\n",
"
2.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.0
\n",
"
\n",
"
\n",
"
1
\n",
"
1
\n",
"
165.10
\n",
"
NaN
\n",
"
Southpaw
\n",
"
125.0
\n",
"
Red
\n",
"
31.0
\n",
"
12.000000
\n",
"
7.714286
\n",
"
9.285714
\n",
"
6.857143
\n",
"
88.142857
\n",
"
36.142857
\n",
"
18.428571
\n",
"
16.428571
\n",
"
84.571429
\n",
"
37.00
\n",
"
0.000
\n",
"
19.285714
\n",
"
14.714286
\n",
"
1.714286
\n",
"
0.142857
\n",
"
115.857143
\n",
"
59.428571
\n",
"
0.575714
\n",
"
0.428571
\n",
"
5.142857
\n",
"
2.428571
\n",
"
0.601429
\n",
"
161.571429
\n",
"
102.857143
\n",
"
24.571429
\n",
"
14.142857
\n",
"
10.571429
\n",
"
7.857143
\n",
"
98.571429
\n",
"
32.571429
\n",
"
6.428571
\n",
"
4.285714
\n",
"
61.857143
\n",
"
12.428571
\n",
"
0.000000
\n",
"
29.142857
\n",
"
18.142857
\n",
"
1.142857
\n",
"
0.000000
\n",
"
115.571429
\n",
"
44.714286
\n",
"
0.437143
\n",
"
0.285714
\n",
"
3.285714
\n",
"
0.857143
\n",
"
0.147143
\n",
"
158.142857
\n",
"
82.285714
\n",
"
0.0
\n",
"
2.0
\n",
"
2019-06-08
\n",
"
0.0
\n",
"
167.64
\n",
"
Valentina Shevchenko
\n",
"
True
\n",
"
2.0
\n",
"
2.0
\n",
"
25.0
\n",
"
1062.00
\n",
"
2.0
\n",
"
Women's Flyweight
\n",
"
0.0
\n",
"
1.0
\n",
"
2.0
\n",
"
0.0
\n",
"
2.0
\n",
"
0.0
\n",
"
5.0
\n",
"
\n",
"
\n",
"
2
\n",
"
2
\n",
"
180.34
\n",
"
NaN
\n",
"
Orthodox
\n",
"
155.0
\n",
"
Red
\n",
"
35.0
\n",
"
13.866667
\n",
"
8.666667
\n",
"
2.866667
\n",
"
1.733333
\n",
"
116.133333
\n",
"
49.466667
\n",
"
5.333333
\n",
"
4.266667
\n",
"
96.733333
\n",
"
35.60
\n",
"
0.200
\n",
"
13.733333
\n",
"
11.200000
\n",
"
0.333333
\n",
"
0.133333
\n",
"
124.333333
\n",
"
55.466667
\n",
"
0.430000
\n",
"
1.000000
\n",
"
0.933333
\n",
"
0.400000
\n",
"
0.277333
\n",
"
133.000000
\n",
"
63.400000
\n",
"
14.466667
\n",
"
8.133333
\n",
"
2.800000
\n",
"
0.733333
\n",
"
91.066667
\n",
"
32.200000
\n",
"
4.866667
\n",
"
2.800000
\n",
"
78.266667
\n",
"
23.200000
\n",
"
0.266667
\n",
"
6.000000
\n",
"
4.400000
\n",
"
0.333333
\n",
"
0.133333
\n",
"
98.733333
\n",
"
35.733333
\n",
"
0.340000
\n",
"
0.066667
\n",
"
2.866667
\n",
"
0.666667
\n",
"
0.131333
\n",
"
102.133333
\n",
"
38.600000
\n",
"
0.0
\n",
"
11.0
\n",
"
2019-06-08
\n",
"
0.0
\n",
"
193.04
\n",
"
Tony Ferguson
\n",
"
True
\n",
"
11.0
\n",
"
1.0
\n",
"
33.0
\n",
"
604.40
\n",
"
2.0
\n",
"
Lightweight
\n",
"
0.0
\n",
"
1.0
\n",
"
3.0
\n",
"
3.0
\n",
"
6.0
\n",
"
1.0
\n",
"
14.0
\n",
"
\n",
"
\n",
"
3
\n",
"
3
\n",
"
162.56
\n",
"
NaN
\n",
"
Orthodox
\n",
"
135.0
\n",
"
Blue
\n",
"
29.0
\n",
"
18.250000
\n",
"
10.250000
\n",
"
5.875000
\n",
"
4.125000
\n",
"
104.875000
\n",
"
41.000000
\n",
"
1.000000
\n",
"
0.625000
\n",
"
80.500000
\n",
"
24.00
\n",
"
0.375
\n",
"
13.000000
\n",
"
11.500000
\n",
"
0.125000
\n",
"
0.000000
\n",
"
111.750000
\n",
"
45.750000
\n",
"
0.366250
\n",
"
0.000000
\n",
"
2.250000
\n",
"
0.625000
\n",
"
0.103750
\n",
"
117.375000
\n",
"
50.750000
\n",
"
20.250000
\n",
"
13.375000
\n",
"
6.875000
\n",
"
5.625000
\n",
"
103.125000
\n",
"
38.500000
\n",
"
0.875000
\n",
"
0.750000
\n",
"
77.375000
\n",
"
20.375000
\n",
"
0.125000
\n",
"
13.250000
\n",
"
11.125000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
110.875000
\n",
"
44.875000
\n",
"
0.446250
\n",
"
0.000000
\n",
"
2.375000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
115.125000
\n",
"
48.875000
\n",
"
1.0
\n",
"
0.0
\n",
"
2019-06-08
\n",
"
0.0
\n",
"
172.72
\n",
"
Jimmie Rivera
\n",
"
False
\n",
"
5.0
\n",
"
2.0
\n",
"
20.0
\n",
"
690.25
\n",
"
0.0
\n",
"
Bantamweight
\n",
"
0.0
\n",
"
1.0
\n",
"
4.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
6.0
\n",
"
\n",
"
\n",
"
4
\n",
"
4
\n",
"
187.96
\n",
"
NaN
\n",
"
Southpaw
\n",
"
264.0
\n",
"
Blue
\n",
"
26.0
\n",
"
7.750000
\n",
"
6.750000
\n",
"
11.000000
\n",
"
7.250000
\n",
"
50.750000
\n",
"
24.750000
\n",
"
0.500000
\n",
"
0.500000
\n",
"
50.750000
\n",
"
22.75
\n",
"
0.500
\n",
"
3.750000
\n",
"
3.000000
\n",
"
0.250000
\n",
"
0.000000
\n",
"
62.250000
\n",
"
32.500000
\n",
"
0.545000
\n",
"
0.000000
\n",
"
0.500000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
63.500000
\n",
"
32.750000
\n",
"
6.250000
\n",
"
4.750000
\n",
"
4.500000
\n",
"
3.500000
\n",
"
42.750000
\n",
"
16.250000
\n",
"
7.750000
\n",
"
2.750000
\n",
"
43.250000
\n",
"
14.000000
\n",
"
0.250000
\n",
"
5.500000
\n",
"
3.750000
\n",
"
0.750000
\n",
"
0.000000
\n",
"
55.000000
\n",
"
22.500000
\n",
"
0.397500
\n",
"
0.000000
\n",
"
1.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
60.500000
\n",
"
27.750000
\n",
"
1.0
\n",
"
0.0
\n",
"
2019-06-08
\n",
"
0.0
\n",
"
190.50
\n",
"
Tai Tuivasa
\n",
"
False
\n",
"
3.0
\n",
"
1.0
\n",
"
7.0
\n",
"
440.75
\n",
"
0.0
\n",
"
Heavyweight
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
2.0
\n",
"
0.0
\n",
"
0.0
\n",
"
3.0
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
10283
\n",
"
5139
\n",
"
193.04
\n",
"
NaN
\n",
"
Orthodox
\n",
"
275.0
\n",
"
Red
\n",
"
NaN
\n",
"
4.000000
\n",
"
3.000000
\n",
"
9.000000
\n",
"
4.000000
\n",
"
10.000000
\n",
"
4.000000
\n",
"
8.000000
\n",
"
7.000000
\n",
"
23.000000
\n",
"
12.00
\n",
"
2.000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
27.000000
\n",
"
15.000000
\n",
"
0.550000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
53.000000
\n",
"
38.000000
\n",
"
6.000000
\n",
"
3.000000
\n",
"
19.000000
\n",
"
10.000000
\n",
"
7.000000
\n",
"
0.000000
\n",
"
2.000000
\n",
"
2.000000
\n",
"
19.000000
\n",
"
7.000000
\n",
"
0.000000
\n",
"
3.000000
\n",
"
2.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
28.000000
\n",
"
12.000000
\n",
"
0.420000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
29.000000
\n",
"
13.000000
\n",
"
0.0
\n",
"
1.0
\n",
"
1993-11-12
\n",
"
0.0
\n",
"
NaN
\n",
"
Kevin Rosier
\n",
"
False
\n",
"
1.0
\n",
"
0.0
\n",
"
1.0
\n",
"
260.00
\n",
"
0.0
\n",
"
Open Weight
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
1.0
\n",
"
\n",
"
\n",
"
10284
\n",
"
5140
\n",
"
187.96
\n",
"
NaN
\n",
"
Orthodox
\n",
"
225.0
\n",
"
Red
\n",
"
30.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
1993-11-12
\n",
"
0.0
\n",
"
NaN
\n",
"
Patrick Smith
\n",
"
False
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
Open Weight
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
10285
\n",
"
5141
\n",
"
185.42
\n",
"
NaN
\n",
"
Orthodox
\n",
"
196.0
\n",
"
Red
\n",
"
30.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
1993-11-12
\n",
"
0.0
\n",
"
NaN
\n",
"
Art Jimmerson
\n",
"
False
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
Open Weight
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
10286
\n",
"
5142
\n",
"
195.58
\n",
"
NaN
\n",
"
Orthodox
\n",
"
250.0
\n",
"
Red
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
1993-11-12
\n",
"
0.0
\n",
"
NaN
\n",
"
Zane Frazier
\n",
"
False
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
Open Weight
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
10287
\n",
"
5143
\n",
"
182.88
\n",
"
NaN
\n",
"
Orthodox
\n",
"
430.0
\n",
"
Red
\n",
"
24.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
1993-11-12
\n",
"
0.0
\n",
"
NaN
\n",
"
Teila Tuli
\n",
"
False
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
Open Weight
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
" \n",
"
\n",
"
10288 rows × 75 columns
\n",
"
"
],
"text/plain": [
" index Height_cms Reach_cms Stance Weight_lbs Winner age \\\n",
"0 0 162.56 NaN Orthodox 135.0 Red 32.0 \n",
"1 1 165.10 NaN Southpaw 125.0 Red 31.0 \n",
"2 2 180.34 NaN Orthodox 155.0 Red 35.0 \n",
"3 3 162.56 NaN Orthodox 135.0 Blue 29.0 \n",
"4 4 187.96 NaN Southpaw 264.0 Blue 26.0 \n",
"... ... ... ... ... ... ... ... \n",
"10283 5139 193.04 NaN Orthodox 275.0 Red NaN \n",
"10284 5140 187.96 NaN Orthodox 225.0 Red 30.0 \n",
"10285 5141 185.42 NaN Orthodox 196.0 Red 30.0 \n",
"10286 5142 195.58 NaN Orthodox 250.0 Red NaN \n",
"10287 5143 182.88 NaN Orthodox 430.0 Red 24.0 \n",
"\n",
" avg_BODY_att avg_BODY_landed avg_CLINCH_att avg_CLINCH_landed \\\n",
"0 21.900000 16.400000 17.000000 11.000000 \n",
"1 12.000000 7.714286 9.285714 6.857143 \n",
"2 13.866667 8.666667 2.866667 1.733333 \n",
"3 18.250000 10.250000 5.875000 4.125000 \n",
"4 7.750000 6.750000 11.000000 7.250000 \n",
"... ... ... ... ... \n",
"10283 4.000000 3.000000 9.000000 4.000000 \n",
"10284 NaN NaN NaN NaN \n",
"10285 NaN NaN NaN NaN \n",
"10286 NaN NaN NaN NaN \n",
"10287 NaN NaN NaN NaN \n",
"\n",
" avg_DISTANCE_att avg_DISTANCE_landed avg_GROUND_att \\\n",
"0 75.000000 26.500000 9.400000 \n",
"1 88.142857 36.142857 18.428571 \n",
"2 116.133333 49.466667 5.333333 \n",
"3 104.875000 41.000000 1.000000 \n",
"4 50.750000 24.750000 0.500000 \n",
"... ... ... ... \n",
"10283 10.000000 4.000000 8.000000 \n",
"10284 NaN NaN NaN \n",
"10285 NaN NaN NaN \n",
"10286 NaN NaN NaN \n",
"10287 NaN NaN NaN \n",
"\n",
" avg_GROUND_landed avg_HEAD_att avg_HEAD_landed avg_KD avg_LEG_att \\\n",
"0 6.500000 74.200000 23.90 0.400 5.300000 \n",
"1 16.428571 84.571429 37.00 0.000 19.285714 \n",
"2 4.266667 96.733333 35.60 0.200 13.733333 \n",
"3 0.625000 80.500000 24.00 0.375 13.000000 \n",
"4 0.500000 50.750000 22.75 0.500 3.750000 \n",
"... ... ... ... ... ... \n",
"10283 7.000000 23.000000 12.00 2.000 0.000000 \n",
"10284 NaN NaN NaN NaN NaN \n",
"10285 NaN NaN NaN NaN NaN \n",
"10286 NaN NaN NaN NaN NaN \n",
"10287 NaN NaN NaN NaN NaN \n",
"\n",
" avg_LEG_landed avg_PASS avg_REV avg_SIG_STR_att \\\n",
"0 3.700000 1.200000 0.000000 101.400000 \n",
"1 14.714286 1.714286 0.142857 115.857143 \n",
"2 11.200000 0.333333 0.133333 124.333333 \n",
"3 11.500000 0.125000 0.000000 111.750000 \n",
"4 3.000000 0.250000 0.000000 62.250000 \n",
"... ... ... ... ... \n",
"10283 0.000000 0.000000 0.000000 27.000000 \n",
"10284 NaN NaN NaN NaN \n",
"10285 NaN NaN NaN NaN \n",
"10286 NaN NaN NaN NaN \n",
"10287 NaN NaN NaN NaN \n",
"\n",
" avg_SIG_STR_landed avg_SIG_STR_pct avg_SUB_ATT avg_TD_att \\\n",
"0 44.000000 0.466000 0.100000 5.300000 \n",
"1 59.428571 0.575714 0.428571 5.142857 \n",
"2 55.466667 0.430000 1.000000 0.933333 \n",
"3 45.750000 0.366250 0.000000 2.250000 \n",
"4 32.500000 0.545000 0.000000 0.500000 \n",
"... ... ... ... ... \n",
"10283 15.000000 0.550000 0.000000 0.000000 \n",
"10284 NaN NaN NaN NaN \n",
"10285 NaN NaN NaN NaN \n",
"10286 NaN NaN NaN NaN \n",
"10287 NaN NaN NaN NaN \n",
"\n",
" avg_TD_landed avg_TD_pct avg_TOTAL_STR_att avg_TOTAL_STR_landed \\\n",
"0 1.900000 0.458000 129.900000 69.100000 \n",
"1 2.428571 0.601429 161.571429 102.857143 \n",
"2 0.400000 0.277333 133.000000 63.400000 \n",
"3 0.625000 0.103750 117.375000 50.750000 \n",
"4 0.000000 0.000000 63.500000 32.750000 \n",
"... ... ... ... ... \n",
"10283 0.000000 0.000000 53.000000 38.000000 \n",
"10284 NaN NaN NaN NaN \n",
"10285 NaN NaN NaN NaN \n",
"10286 NaN NaN NaN NaN \n",
"10287 NaN NaN NaN NaN \n",
"\n",
" avg_opp_BODY_att avg_opp_BODY_landed avg_opp_CLINCH_att \\\n",
"0 13.300000 8.800000 7.500000 \n",
"1 24.571429 14.142857 10.571429 \n",
"2 14.466667 8.133333 2.800000 \n",
"3 20.250000 13.375000 6.875000 \n",
"4 6.250000 4.750000 4.500000 \n",
"... ... ... ... \n",
"10283 6.000000 3.000000 19.000000 \n",
"10284 NaN NaN NaN \n",
"10285 NaN NaN NaN \n",
"10286 NaN NaN NaN \n",
"10287 NaN NaN NaN \n",
"\n",
" avg_opp_CLINCH_landed avg_opp_DISTANCE_att avg_opp_DISTANCE_landed \\\n",
"0 5.100000 90.500000 26.800000 \n",
"1 7.857143 98.571429 32.571429 \n",
"2 0.733333 91.066667 32.200000 \n",
"3 5.625000 103.125000 38.500000 \n",
"4 3.500000 42.750000 16.250000 \n",
"... ... ... ... \n",
"10283 10.000000 7.000000 0.000000 \n",
"10284 NaN NaN NaN \n",
"10285 NaN NaN NaN \n",
"10286 NaN NaN NaN \n",
"10287 NaN NaN NaN \n",
"\n",
" avg_opp_GROUND_att avg_opp_GROUND_landed avg_opp_HEAD_att \\\n",
"0 0.800000 0.300000 76.100000 \n",
"1 6.428571 4.285714 61.857143 \n",
"2 4.866667 2.800000 78.266667 \n",
"3 0.875000 0.750000 77.375000 \n",
"4 7.750000 2.750000 43.250000 \n",
"... ... ... ... \n",
"10283 2.000000 2.000000 19.000000 \n",
"10284 NaN NaN NaN \n",
"10285 NaN NaN NaN \n",
"10286 NaN NaN NaN \n",
"10287 NaN NaN NaN \n",
"\n",
" avg_opp_HEAD_landed avg_opp_KD avg_opp_LEG_att avg_opp_LEG_landed \\\n",
"0 17.300000 0.100000 9.400000 6.100000 \n",
"1 12.428571 0.000000 29.142857 18.142857 \n",
"2 23.200000 0.266667 6.000000 4.400000 \n",
"3 20.375000 0.125000 13.250000 11.125000 \n",
"4 14.000000 0.250000 5.500000 3.750000 \n",
"... ... ... ... ... \n",
"10283 7.000000 0.000000 3.000000 2.000000 \n",
"10284 NaN NaN NaN NaN \n",
"10285 NaN NaN NaN NaN \n",
"10286 NaN NaN NaN NaN \n",
"10287 NaN NaN NaN NaN \n",
"\n",
" avg_opp_PASS avg_opp_REV avg_opp_SIG_STR_att avg_opp_SIG_STR_landed \\\n",
"0 0.000000 0.000000 98.800000 32.200000 \n",
"1 1.142857 0.000000 115.571429 44.714286 \n",
"2 0.333333 0.133333 98.733333 35.733333 \n",
"3 0.000000 0.000000 110.875000 44.875000 \n",
"4 0.750000 0.000000 55.000000 22.500000 \n",
"... ... ... ... ... \n",
"10283 0.000000 0.000000 28.000000 12.000000 \n",
"10284 NaN NaN NaN NaN \n",
"10285 NaN NaN NaN NaN \n",
"10286 NaN NaN NaN NaN \n",
"10287 NaN NaN NaN NaN \n",
"\n",
" avg_opp_SIG_STR_pct avg_opp_SUB_ATT avg_opp_TD_att \\\n",
"0 0.336000 0.000000 0.900000 \n",
"1 0.437143 0.285714 3.285714 \n",
"2 0.340000 0.066667 2.866667 \n",
"3 0.446250 0.000000 2.375000 \n",
"4 0.397500 0.000000 1.000000 \n",
"... ... ... ... \n",
"10283 0.420000 0.000000 0.000000 \n",
"10284 NaN NaN NaN \n",
"10285 NaN NaN NaN \n",
"10286 NaN NaN NaN \n",
"10287 NaN NaN NaN \n",
"\n",
" avg_opp_TD_landed avg_opp_TD_pct avg_opp_TOTAL_STR_att \\\n",
"0 0.100000 0.050000 110.500000 \n",
"1 0.857143 0.147143 158.142857 \n",
"2 0.666667 0.131333 102.133333 \n",
"3 0.000000 0.000000 115.125000 \n",
"4 0.000000 0.000000 60.500000 \n",
"... ... ... ... \n",
"10283 0.000000 0.000000 29.000000 \n",
"10284 NaN NaN NaN \n",
"10285 NaN NaN NaN \n",
"10286 NaN NaN NaN \n",
"10287 NaN NaN NaN \n",
"\n",
" avg_opp_TOTAL_STR_landed current_lose_streak current_win_streak \\\n",
"0 43.300000 0.0 4.0 \n",
"1 82.285714 0.0 2.0 \n",
"2 38.600000 0.0 11.0 \n",
"3 48.875000 1.0 0.0 \n",
"4 27.750000 1.0 0.0 \n",
"... ... ... ... \n",
"10283 13.000000 0.0 1.0 \n",
"10284 NaN 0.0 0.0 \n",
"10285 NaN 0.0 0.0 \n",
"10286 NaN 0.0 0.0 \n",
"10287 NaN 0.0 0.0 \n",
"\n",
" date draw each_cms fighter is_winner \\\n",
"0 2019-06-08 0.0 162.56 Henry Cejudo True \n",
"1 2019-06-08 0.0 167.64 Valentina Shevchenko True \n",
"2 2019-06-08 0.0 193.04 Tony Ferguson True \n",
"3 2019-06-08 0.0 172.72 Jimmie Rivera False \n",
"4 2019-06-08 0.0 190.50 Tai Tuivasa False \n",
"... ... ... ... ... ... \n",
"10283 1993-11-12 0.0 NaN Kevin Rosier False \n",
"10284 1993-11-12 0.0 NaN Patrick Smith False \n",
"10285 1993-11-12 0.0 NaN Art Jimmerson False \n",
"10286 1993-11-12 0.0 NaN Zane Frazier False \n",
"10287 1993-11-12 0.0 NaN Teila Tuli False \n",
"\n",
" longest_win_streak losses total_rounds_fought \\\n",
"0 4.0 2.0 27.0 \n",
"1 2.0 2.0 25.0 \n",
"2 11.0 1.0 33.0 \n",
"3 5.0 2.0 20.0 \n",
"4 3.0 1.0 7.0 \n",
"... ... ... ... \n",
"10283 1.0 0.0 1.0 \n",
"10284 0.0 0.0 0.0 \n",
"10285 0.0 0.0 0.0 \n",
"10286 0.0 0.0 0.0 \n",
"10287 0.0 0.0 0.0 \n",
"\n",
" total_time_fought(seconds) total_title_bouts weight_class \\\n",
"0 742.60 3.0 Bantamweight \n",
"1 1062.00 2.0 Women's Flyweight \n",
"2 604.40 2.0 Lightweight \n",
"3 690.25 0.0 Bantamweight \n",
"4 440.75 0.0 Heavyweight \n",
"... ... ... ... \n",
"10283 260.00 0.0 Open Weight \n",
"10284 NaN 0.0 Open Weight \n",
"10285 NaN 0.0 Open Weight \n",
"10286 NaN 0.0 Open Weight \n",
"10287 NaN 0.0 Open Weight \n",
"\n",
" win_by_Decision_Majority win_by_Decision_Split \\\n",
"0 0.0 2.0 \n",
"1 0.0 1.0 \n",
"2 0.0 1.0 \n",
"3 0.0 1.0 \n",
"4 0.0 0.0 \n",
"... ... ... \n",
"10283 0.0 0.0 \n",
"10284 0.0 0.0 \n",
"10285 0.0 0.0 \n",
"10286 0.0 0.0 \n",
"10287 0.0 0.0 \n",
"\n",
" win_by_Decision_Unanimous win_by_KO/TKO win_by_Submission \\\n",
"0 4.0 2.0 0.0 \n",
"1 2.0 0.0 2.0 \n",
"2 3.0 3.0 6.0 \n",
"3 4.0 1.0 0.0 \n",
"4 1.0 2.0 0.0 \n",
"... ... ... ... \n",
"10283 0.0 1.0 0.0 \n",
"10284 0.0 0.0 0.0 \n",
"10285 0.0 0.0 0.0 \n",
"10286 0.0 0.0 0.0 \n",
"10287 0.0 0.0 0.0 \n",
"\n",
" win_by_TKO_Doctor_Stoppage wins \n",
"0 0.0 8.0 \n",
"1 0.0 5.0 \n",
"2 1.0 14.0 \n",
"3 0.0 6.0 \n",
"4 0.0 3.0 \n",
"... ... ... \n",
"10283 0.0 1.0 \n",
"10284 0.0 0.0 \n",
"10285 0.0 0.0 \n",
"10286 0.0 0.0 \n",
"10287 0.0 0.0 \n",
"\n",
"[10288 rows x 75 columns]"
]
},
"metadata": {
"tags": []
},
"execution_count": 171
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "BKxG2DBW-g7e",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 689
},
"outputId": "1e8d4934-e5bf-427c-95be-be8c799a63d7"
},
"source": [
"fighters_df = fighters_df.merge(sheet_df, left_on=\"fighter\", right_on=\"name\")\n",
"fighters_df"
],
"execution_count": 172,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
index
\n",
"
Height_cms
\n",
"
Reach_cms
\n",
"
Stance
\n",
"
Weight_lbs
\n",
"
Winner
\n",
"
age
\n",
"
avg_BODY_att
\n",
"
avg_BODY_landed
\n",
"
avg_CLINCH_att
\n",
"
avg_CLINCH_landed
\n",
"
avg_DISTANCE_att
\n",
"
avg_DISTANCE_landed
\n",
"
avg_GROUND_att
\n",
"
avg_GROUND_landed
\n",
"
avg_HEAD_att
\n",
"
avg_HEAD_landed
\n",
"
avg_KD
\n",
"
avg_LEG_att
\n",
"
avg_LEG_landed
\n",
"
avg_PASS
\n",
"
avg_REV
\n",
"
avg_SIG_STR_att
\n",
"
avg_SIG_STR_landed
\n",
"
avg_SIG_STR_pct
\n",
"
avg_SUB_ATT
\n",
"
avg_TD_att
\n",
"
avg_TD_landed
\n",
"
avg_TD_pct
\n",
"
avg_TOTAL_STR_att
\n",
"
avg_TOTAL_STR_landed
\n",
"
avg_opp_BODY_att
\n",
"
avg_opp_BODY_landed
\n",
"
avg_opp_CLINCH_att
\n",
"
avg_opp_CLINCH_landed
\n",
"
avg_opp_DISTANCE_att
\n",
"
avg_opp_DISTANCE_landed
\n",
"
avg_opp_GROUND_att
\n",
"
avg_opp_GROUND_landed
\n",
"
avg_opp_HEAD_att
\n",
"
avg_opp_HEAD_landed
\n",
"
avg_opp_KD
\n",
"
avg_opp_LEG_att
\n",
"
avg_opp_LEG_landed
\n",
"
avg_opp_PASS
\n",
"
avg_opp_REV
\n",
"
avg_opp_SIG_STR_att
\n",
"
avg_opp_SIG_STR_landed
\n",
"
avg_opp_SIG_STR_pct
\n",
"
avg_opp_SUB_ATT
\n",
"
avg_opp_TD_att
\n",
"
avg_opp_TD_landed
\n",
"
avg_opp_TD_pct
\n",
"
avg_opp_TOTAL_STR_att
\n",
"
avg_opp_TOTAL_STR_landed
\n",
"
current_lose_streak
\n",
"
current_win_streak
\n",
"
date
\n",
"
draw
\n",
"
each_cms
\n",
"
fighter
\n",
"
is_winner
\n",
"
longest_win_streak
\n",
"
losses
\n",
"
total_rounds_fought
\n",
"
total_time_fought(seconds)
\n",
"
total_title_bouts
\n",
"
weight_class
\n",
"
win_by_Decision_Majority
\n",
"
win_by_Decision_Split
\n",
"
win_by_Decision_Unanimous
\n",
"
win_by_KO/TKO
\n",
"
win_by_Submission
\n",
"
win_by_TKO_Doctor_Stoppage
\n",
"
wins
\n",
"
url
\n",
"
fid
\n",
"
name
\n",
"
nick
\n",
"
birth_date
\n",
"
height
\n",
"
weight
\n",
"
association
\n",
"
class
\n",
"
locality
\n",
"
country
\n",
"
birth_year
\n",
"
age_group
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
0
\n",
"
162.56
\n",
"
NaN
\n",
"
Orthodox
\n",
"
135.0
\n",
"
Red
\n",
"
32.0
\n",
"
21.900000
\n",
"
16.400000
\n",
"
17.000000
\n",
"
11.000000
\n",
"
75.000000
\n",
"
26.500000
\n",
"
9.400000
\n",
"
6.500000
\n",
"
74.200000
\n",
"
23.900000
\n",
"
0.400000
\n",
"
5.300000
\n",
"
3.700000
\n",
"
1.200000
\n",
"
0.0
\n",
"
101.400000
\n",
"
44.000000
\n",
"
0.466000
\n",
"
0.100000
\n",
"
5.300000
\n",
"
1.900000
\n",
"
0.458000
\n",
"
129.900000
\n",
"
69.100000
\n",
"
13.300000
\n",
"
8.800000
\n",
"
7.500000
\n",
"
5.100000
\n",
"
90.500000
\n",
"
26.800000
\n",
"
0.800000
\n",
"
0.300000
\n",
"
76.100000
\n",
"
17.300000
\n",
"
0.100000
\n",
"
9.400000
\n",
"
6.100000
\n",
"
0.0
\n",
"
0.0
\n",
"
98.800000
\n",
"
32.200000
\n",
"
0.336000
\n",
"
0.0
\n",
"
0.900000
\n",
"
0.100000
\n",
"
0.050000
\n",
"
110.500000
\n",
"
43.300000
\n",
"
0.0
\n",
"
4.0
\n",
"
2019-06-08
\n",
"
0.0
\n",
"
162.56
\n",
"
Henry Cejudo
\n",
"
True
\n",
"
4.0
\n",
"
2.0
\n",
"
27.0
\n",
"
742.600000
\n",
"
3.0
\n",
"
Bantamweight
\n",
"
0.0
\n",
"
2.0
\n",
"
4.0
\n",
"
2.0
\n",
"
0.0
\n",
"
0.0
\n",
"
8.0
\n",
"
/fighter/Henry-Cejudo-125297
\n",
"
125297
\n",
"
Henry Cejudo
\n",
"
The Messenger
\n",
"
2/9/1987
\n",
"
64.0
\n",
"
125.0
\n",
"
Fight Ready
\n",
"
Flyweight
\n",
"
Phoenix, Arizona
\n",
"
United States
\n",
"
1987.0
\n",
"
1985
\n",
"
\n",
"
\n",
"
1
\n",
"
210
\n",
"
162.56
\n",
"
NaN
\n",
"
Orthodox
\n",
"
135.0
\n",
"
Red
\n",
"
31.0
\n",
"
24.222222
\n",
"
18.111111
\n",
"
18.888889
\n",
"
12.222222
\n",
"
82.666667
\n",
"
29.111111
\n",
"
8.555556
\n",
"
5.555556
\n",
"
80.000000
\n",
"
24.666667
\n",
"
0.333333
\n",
"
5.888889
\n",
"
4.111111
\n",
"
1.333333
\n",
"
0.0
\n",
"
110.111111
\n",
"
46.888889
\n",
"
0.431111
\n",
"
0.111111
\n",
"
5.888889
\n",
"
2.111111
\n",
"
0.508889
\n",
"
141.777778
\n",
"
74.777778
\n",
"
14.777778
\n",
"
9.777778
\n",
"
8.333333
\n",
"
5.666667
\n",
"
100.222222
\n",
"
29.666667
\n",
"
0.888889
\n",
"
0.333333
\n",
"
84.444444
\n",
"
19.222222
\n",
"
0.111111
\n",
"
10.222222
\n",
"
6.666667
\n",
"
0.0
\n",
"
0.0
\n",
"
109.444444
\n",
"
35.666667
\n",
"
0.336667
\n",
"
0.0
\n",
"
1.000000
\n",
"
0.111111
\n",
"
0.055556
\n",
"
122.444444
\n",
"
48.000000
\n",
"
0.0
\n",
"
3.0
\n",
"
2019-01-19
\n",
"
0.0
\n",
"
162.56
\n",
"
Henry Cejudo
\n",
"
True
\n",
"
4.0
\n",
"
2.0
\n",
"
26.0
\n",
"
821.555556
\n",
"
2.0
\n",
"
Flyweight
\n",
"
0.0
\n",
"
2.0
\n",
"
4.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
7.0
\n",
"
/fighter/Henry-Cejudo-125297
\n",
"
125297
\n",
"
Henry Cejudo
\n",
"
The Messenger
\n",
"
2/9/1987
\n",
"
64.0
\n",
"
125.0
\n",
"
Fight Ready
\n",
"
Flyweight
\n",
"
Phoenix, Arizona
\n",
"
United States
\n",
"
1987.0
\n",
"
1985
\n",
"
\n",
"
\n",
"
2
\n",
"
733
\n",
"
162.56
\n",
"
NaN
\n",
"
Orthodox
\n",
"
135.0
\n",
"
Red
\n",
"
30.0
\n",
"
25.714286
\n",
"
19.285714
\n",
"
20.714286
\n",
"
12.857143
\n",
"
81.142857
\n",
"
30.714286
\n",
"
6.857143
\n",
"
4.285714
\n",
"
77.571429
\n",
"
25.000000
\n",
"
0.428571
\n",
"
5.428571
\n",
"
3.571429
\n",
"
1.000000
\n",
"
0.0
\n",
"
108.714286
\n",
"
47.857143
\n",
"
0.444286
\n",
"
0.142857
\n",
"
5.285714
\n",
"
1.857143
\n",
"
0.530000
\n",
"
135.714286
\n",
"
72.571429
\n",
"
15.428571
\n",
"
9.428571
\n",
"
9.428571
\n",
"
6.142857
\n",
"
97.714286
\n",
"
24.428571
\n",
"
0.428571
\n",
"
0.142857
\n",
"
86.714286
\n",
"
18.714286
\n",
"
0.142857
\n",
"
5.428571
\n",
"
2.571429
\n",
"
0.0
\n",
"
0.0
\n",
"
107.571429
\n",
"
30.714286
\n",
"
0.311429
\n",
"
0.0
\n",
"
0.857143
\n",
"
0.000000
\n",
"
0.000000
\n",
"
116.571429
\n",
"
39.000000
\n",
"
0.0
\n",
"
1.0
\n",
"
2017-12-02
\n",
"
0.0
\n",
"
162.56
\n",
"
Henry Cejudo
\n",
"
True
\n",
"
4.0
\n",
"
2.0
\n",
"
18.0
\n",
"
713.428571
\n",
"
1.0
\n",
"
Flyweight
\n",
"
0.0
\n",
"
1.0
\n",
"
3.0
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
5.0
\n",
"
/fighter/Henry-Cejudo-125297
\n",
"
125297
\n",
"
Henry Cejudo
\n",
"
The Messenger
\n",
"
2/9/1987
\n",
"
64.0
\n",
"
125.0
\n",
"
Fight Ready
\n",
"
Flyweight
\n",
"
Phoenix, Arizona
\n",
"
United States
\n",
"
1987.0
\n",
"
1985
\n",
"
\n",
"
\n",
"
3
\n",
"
860
\n",
"
162.56
\n",
"
NaN
\n",
"
Orthodox
\n",
"
135.0
\n",
"
Red
\n",
"
30.0
\n",
"
28.666667
\n",
"
21.333333
\n",
"
23.666667
\n",
"
14.666667
\n",
"
87.833333
\n",
"
31.833333
\n",
"
5.666667
\n",
"
3.666667
\n",
"
82.666667
\n",
"
25.166667
\n",
"
0.333333
\n",
"
5.833333
\n",
"
3.666667
\n",
"
1.166667
\n",
"
0.0
\n",
"
117.166667
\n",
"
50.166667
\n",
"
0.421667
\n",
"
0.166667
\n",
"
5.833333
\n",
"
1.833333
\n",
"
0.451667
\n",
"
147.666667
\n",
"
78.166667
\n",
"
18.000000
\n",
"
11.000000
\n",
"
11.000000
\n",
"
7.166667
\n",
"
109.833333
\n",
"
27.666667
\n",
"
0.500000
\n",
"
0.166667
\n",
"
97.166667
\n",
"
21.166667
\n",
"
0.166667
\n",
"
6.166667
\n",
"
2.833333
\n",
"
0.0
\n",
"
0.0
\n",
"
121.333333
\n",
"
35.000000
\n",
"
0.330000
\n",
"
0.0
\n",
"
0.833333
\n",
"
0.000000
\n",
"
0.000000
\n",
"
131.833333
\n",
"
44.666667
\n",
"
2.0
\n",
"
0.0
\n",
"
2017-09-09
\n",
"
0.0
\n",
"
162.56
\n",
"
Henry Cejudo
\n",
"
True
\n",
"
4.0
\n",
"
2.0
\n",
"
16.0
\n",
"
778.166667
\n",
"
1.0
\n",
"
Flyweight
\n",
"
0.0
\n",
"
1.0
\n",
"
3.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
4.0
\n",
"
/fighter/Henry-Cejudo-125297
\n",
"
125297
\n",
"
Henry Cejudo
\n",
"
The Messenger
\n",
"
2/9/1987
\n",
"
64.0
\n",
"
125.0
\n",
"
Fight Ready
\n",
"
Flyweight
\n",
"
Phoenix, Arizona
\n",
"
United States
\n",
"
1987.0
\n",
"
1985
\n",
"
\n",
"
\n",
"
4
\n",
"
1902
\n",
"
162.56
\n",
"
NaN
\n",
"
Orthodox
\n",
"
135.0
\n",
"
Red
\n",
"
28.0
\n",
"
30.000000
\n",
"
22.500000
\n",
"
24.000000
\n",
"
15.500000
\n",
"
79.000000
\n",
"
34.500000
\n",
"
16.000000
\n",
"
11.000000
\n",
"
85.500000
\n",
"
35.500000
\n",
"
0.500000
\n",
"
3.500000
\n",
"
3.000000
\n",
"
3.500000
\n",
"
0.0
\n",
"
119.000000
\n",
"
61.000000
\n",
"
0.510000
\n",
"
0.500000
\n",
"
4.500000
\n",
"
3.000000
\n",
"
0.425000
\n",
"
155.500000
\n",
"
93.500000
\n",
"
17.000000
\n",
"
9.000000
\n",
"
6.000000
\n",
"
3.000000
\n",
"
110.000000
\n",
"
20.500000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
96.500000
\n",
"
13.500000
\n",
"
0.000000
\n",
"
2.500000
\n",
"
1.000000
\n",
"
0.0
\n",
"
0.0
\n",
"
116.000000
\n",
"
23.500000
\n",
"
0.225000
\n",
"
0.0
\n",
"
0.500000
\n",
"
0.000000
\n",
"
0.000000
\n",
"
126.500000
\n",
"
33.000000
\n",
"
0.0
\n",
"
2.0
\n",
"
2015-06-13
\n",
"
0.0
\n",
"
162.56
\n",
"
Henry Cejudo
\n",
"
True
\n",
"
2.0
\n",
"
0.0
\n",
"
6.0
\n",
"
900.000000
\n",
"
0.0
\n",
"
Flyweight
\n",
"
0.0
\n",
"
0.0
\n",
"
2.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
2.0
\n",
"
/fighter/Henry-Cejudo-125297
\n",
"
125297
\n",
"
Henry Cejudo
\n",
"
The Messenger
\n",
"
2/9/1987
\n",
"
64.0
\n",
"
125.0
\n",
"
Fight Ready
\n",
"
Flyweight
\n",
"
Phoenix, Arizona
\n",
"
United States
\n",
"
1987.0
\n",
"
1985
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
8666
\n",
"
5134
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
Red
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
1994-03-11
\n",
"
0.0
\n",
"
NaN
\n",
"
Ray Wizard
\n",
"
False
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
Open Weight
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
/fighter/Ray-Wizard-26
\n",
"
26
\n",
"
Ray Wizard
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
Los Angeles, California
\n",
"
United States
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
8667
\n",
"
5135
\n",
"
182.88
\n",
"
NaN
\n",
"
NaN
\n",
"
175.0
\n",
"
Red
\n",
"
18.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
1994-03-11
\n",
"
0.0
\n",
"
NaN
\n",
"
Sean Daugherty
\n",
"
False
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
Open Weight
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
/fighter/Sean-Daugherty-25
\n",
"
25
\n",
"
Sean Daugherty
\n",
"
NaN
\n",
"
12/4/1975
\n",
"
70.0
\n",
"
190.0
\n",
"
NaN
\n",
"
Light Heavyweight
\n",
"
Akron, Ohio
\n",
"
United States
\n",
"
1975.0
\n",
"
1970
\n",
"
\n",
"
\n",
"
8668
\n",
"
5137
\n",
"
187.96
\n",
"
NaN
\n",
"
NaN
\n",
"
185.0
\n",
"
Red
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
1993-11-12
\n",
"
0.0
\n",
"
NaN
\n",
"
Trent Jenkins
\n",
"
False
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
Open Weight
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
/fighter/Trent-Jenkins-23
\n",
"
23
\n",
"
Trent Jenkins
\n",
"
NaN
\n",
"
NaN
\n",
"
74.0
\n",
"
185.0
\n",
"
NaN
\n",
"
Middleweight
\n",
"
Denver, Colorado
\n",
"
United States
\n",
"
NaN
\n",
"
NaN
\n",
"
\n",
"
\n",
"
8669
\n",
"
5141
\n",
"
185.42
\n",
"
NaN
\n",
"
Orthodox
\n",
"
196.0
\n",
"
Red
\n",
"
30.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
1993-11-12
\n",
"
0.0
\n",
"
NaN
\n",
"
Art Jimmerson
\n",
"
False
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
Open Weight
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
/fighter/Art-Jimmerson-20
\n",
"
20
\n",
"
Art Jimmerson
\n",
"
NaN
\n",
"
8/4/1963
\n",
"
73.0
\n",
"
196.0
\n",
"
NaN
\n",
"
Light Heavyweight
\n",
"
St. Louis, Missouri
\n",
"
United States
\n",
"
1963.0
\n",
"
NaN
\n",
"
\n",
"
\n",
"
8670
\n",
"
5143
\n",
"
182.88
\n",
"
NaN
\n",
"
Orthodox
\n",
"
430.0
\n",
"
Red
\n",
"
24.0
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
0.0
\n",
"
0.0
\n",
"
1993-11-12
\n",
"
0.0
\n",
"
NaN
\n",
"
Teila Tuli
\n",
"
False
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
NaN
\n",
"
0.0
\n",
"
Open Weight
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
/fighter/Teila-Tuli-16
\n",
"
16
\n",
"
Teila Tuli
\n",
"
NaN
\n",
"
6/14/1969
\n",
"
74.0
\n",
"
415.0
\n",
"
NaN
\n",
"
Super Heavyweight
\n",
"
Honolulu, Hawaii
\n",
"
United States
\n",
"
1969.0
\n",
"
1965
\n",
"
\n",
" \n",
"
\n",
"
8671 rows × 88 columns
\n",
"
"
],
"text/plain": [
" index Height_cms Reach_cms Stance Weight_lbs Winner age \\\n",
"0 0 162.56 NaN Orthodox 135.0 Red 32.0 \n",
"1 210 162.56 NaN Orthodox 135.0 Red 31.0 \n",
"2 733 162.56 NaN Orthodox 135.0 Red 30.0 \n",
"3 860 162.56 NaN Orthodox 135.0 Red 30.0 \n",
"4 1902 162.56 NaN Orthodox 135.0 Red 28.0 \n",
"... ... ... ... ... ... ... ... \n",
"8666 5134 NaN NaN NaN NaN Red NaN \n",
"8667 5135 182.88 NaN NaN 175.0 Red 18.0 \n",
"8668 5137 187.96 NaN NaN 185.0 Red NaN \n",
"8669 5141 185.42 NaN Orthodox 196.0 Red 30.0 \n",
"8670 5143 182.88 NaN Orthodox 430.0 Red 24.0 \n",
"\n",
" avg_BODY_att avg_BODY_landed avg_CLINCH_att avg_CLINCH_landed \\\n",
"0 21.900000 16.400000 17.000000 11.000000 \n",
"1 24.222222 18.111111 18.888889 12.222222 \n",
"2 25.714286 19.285714 20.714286 12.857143 \n",
"3 28.666667 21.333333 23.666667 14.666667 \n",
"4 30.000000 22.500000 24.000000 15.500000 \n",
"... ... ... ... ... \n",
"8666 NaN NaN NaN NaN \n",
"8667 NaN NaN NaN NaN \n",
"8668 NaN NaN NaN NaN \n",
"8669 NaN NaN NaN NaN \n",
"8670 NaN NaN NaN NaN \n",
"\n",
" avg_DISTANCE_att avg_DISTANCE_landed avg_GROUND_att \\\n",
"0 75.000000 26.500000 9.400000 \n",
"1 82.666667 29.111111 8.555556 \n",
"2 81.142857 30.714286 6.857143 \n",
"3 87.833333 31.833333 5.666667 \n",
"4 79.000000 34.500000 16.000000 \n",
"... ... ... ... \n",
"8666 NaN NaN NaN \n",
"8667 NaN NaN NaN \n",
"8668 NaN NaN NaN \n",
"8669 NaN NaN NaN \n",
"8670 NaN NaN NaN \n",
"\n",
" avg_GROUND_landed avg_HEAD_att avg_HEAD_landed avg_KD avg_LEG_att \\\n",
"0 6.500000 74.200000 23.900000 0.400000 5.300000 \n",
"1 5.555556 80.000000 24.666667 0.333333 5.888889 \n",
"2 4.285714 77.571429 25.000000 0.428571 5.428571 \n",
"3 3.666667 82.666667 25.166667 0.333333 5.833333 \n",
"4 11.000000 85.500000 35.500000 0.500000 3.500000 \n",
"... ... ... ... ... ... \n",
"8666 NaN NaN NaN NaN NaN \n",
"8667 NaN NaN NaN NaN NaN \n",
"8668 NaN NaN NaN NaN NaN \n",
"8669 NaN NaN NaN NaN NaN \n",
"8670 NaN NaN NaN NaN NaN \n",
"\n",
" avg_LEG_landed avg_PASS avg_REV avg_SIG_STR_att avg_SIG_STR_landed \\\n",
"0 3.700000 1.200000 0.0 101.400000 44.000000 \n",
"1 4.111111 1.333333 0.0 110.111111 46.888889 \n",
"2 3.571429 1.000000 0.0 108.714286 47.857143 \n",
"3 3.666667 1.166667 0.0 117.166667 50.166667 \n",
"4 3.000000 3.500000 0.0 119.000000 61.000000 \n",
"... ... ... ... ... ... \n",
"8666 NaN NaN NaN NaN NaN \n",
"8667 NaN NaN NaN NaN NaN \n",
"8668 NaN NaN NaN NaN NaN \n",
"8669 NaN NaN NaN NaN NaN \n",
"8670 NaN NaN NaN NaN NaN \n",
"\n",
" avg_SIG_STR_pct avg_SUB_ATT avg_TD_att avg_TD_landed avg_TD_pct \\\n",
"0 0.466000 0.100000 5.300000 1.900000 0.458000 \n",
"1 0.431111 0.111111 5.888889 2.111111 0.508889 \n",
"2 0.444286 0.142857 5.285714 1.857143 0.530000 \n",
"3 0.421667 0.166667 5.833333 1.833333 0.451667 \n",
"4 0.510000 0.500000 4.500000 3.000000 0.425000 \n",
"... ... ... ... ... ... \n",
"8666 NaN NaN NaN NaN NaN \n",
"8667 NaN NaN NaN NaN NaN \n",
"8668 NaN NaN NaN NaN NaN \n",
"8669 NaN NaN NaN NaN NaN \n",
"8670 NaN NaN NaN NaN NaN \n",
"\n",
" avg_TOTAL_STR_att avg_TOTAL_STR_landed avg_opp_BODY_att \\\n",
"0 129.900000 69.100000 13.300000 \n",
"1 141.777778 74.777778 14.777778 \n",
"2 135.714286 72.571429 15.428571 \n",
"3 147.666667 78.166667 18.000000 \n",
"4 155.500000 93.500000 17.000000 \n",
"... ... ... ... \n",
"8666 NaN NaN NaN \n",
"8667 NaN NaN NaN \n",
"8668 NaN NaN NaN \n",
"8669 NaN NaN NaN \n",
"8670 NaN NaN NaN \n",
"\n",
" avg_opp_BODY_landed avg_opp_CLINCH_att avg_opp_CLINCH_landed \\\n",
"0 8.800000 7.500000 5.100000 \n",
"1 9.777778 8.333333 5.666667 \n",
"2 9.428571 9.428571 6.142857 \n",
"3 11.000000 11.000000 7.166667 \n",
"4 9.000000 6.000000 3.000000 \n",
"... ... ... ... \n",
"8666 NaN NaN NaN \n",
"8667 NaN NaN NaN \n",
"8668 NaN NaN NaN \n",
"8669 NaN NaN NaN \n",
"8670 NaN NaN NaN \n",
"\n",
" avg_opp_DISTANCE_att avg_opp_DISTANCE_landed avg_opp_GROUND_att \\\n",
"0 90.500000 26.800000 0.800000 \n",
"1 100.222222 29.666667 0.888889 \n",
"2 97.714286 24.428571 0.428571 \n",
"3 109.833333 27.666667 0.500000 \n",
"4 110.000000 20.500000 0.000000 \n",
"... ... ... ... \n",
"8666 NaN NaN NaN \n",
"8667 NaN NaN NaN \n",
"8668 NaN NaN NaN \n",
"8669 NaN NaN NaN \n",
"8670 NaN NaN NaN \n",
"\n",
" avg_opp_GROUND_landed avg_opp_HEAD_att avg_opp_HEAD_landed \\\n",
"0 0.300000 76.100000 17.300000 \n",
"1 0.333333 84.444444 19.222222 \n",
"2 0.142857 86.714286 18.714286 \n",
"3 0.166667 97.166667 21.166667 \n",
"4 0.000000 96.500000 13.500000 \n",
"... ... ... ... \n",
"8666 NaN NaN NaN \n",
"8667 NaN NaN NaN \n",
"8668 NaN NaN NaN \n",
"8669 NaN NaN NaN \n",
"8670 NaN NaN NaN \n",
"\n",
" avg_opp_KD avg_opp_LEG_att avg_opp_LEG_landed avg_opp_PASS \\\n",
"0 0.100000 9.400000 6.100000 0.0 \n",
"1 0.111111 10.222222 6.666667 0.0 \n",
"2 0.142857 5.428571 2.571429 0.0 \n",
"3 0.166667 6.166667 2.833333 0.0 \n",
"4 0.000000 2.500000 1.000000 0.0 \n",
"... ... ... ... ... \n",
"8666 NaN NaN NaN NaN \n",
"8667 NaN NaN NaN NaN \n",
"8668 NaN NaN NaN NaN \n",
"8669 NaN NaN NaN NaN \n",
"8670 NaN NaN NaN NaN \n",
"\n",
" avg_opp_REV avg_opp_SIG_STR_att avg_opp_SIG_STR_landed \\\n",
"0 0.0 98.800000 32.200000 \n",
"1 0.0 109.444444 35.666667 \n",
"2 0.0 107.571429 30.714286 \n",
"3 0.0 121.333333 35.000000 \n",
"4 0.0 116.000000 23.500000 \n",
"... ... ... ... \n",
"8666 NaN NaN NaN \n",
"8667 NaN NaN NaN \n",
"8668 NaN NaN NaN \n",
"8669 NaN NaN NaN \n",
"8670 NaN NaN NaN \n",
"\n",
" avg_opp_SIG_STR_pct avg_opp_SUB_ATT avg_opp_TD_att avg_opp_TD_landed \\\n",
"0 0.336000 0.0 0.900000 0.100000 \n",
"1 0.336667 0.0 1.000000 0.111111 \n",
"2 0.311429 0.0 0.857143 0.000000 \n",
"3 0.330000 0.0 0.833333 0.000000 \n",
"4 0.225000 0.0 0.500000 0.000000 \n",
"... ... ... ... ... \n",
"8666 NaN NaN NaN NaN \n",
"8667 NaN NaN NaN NaN \n",
"8668 NaN NaN NaN NaN \n",
"8669 NaN NaN NaN NaN \n",
"8670 NaN NaN NaN NaN \n",
"\n",
" avg_opp_TD_pct avg_opp_TOTAL_STR_att avg_opp_TOTAL_STR_landed \\\n",
"0 0.050000 110.500000 43.300000 \n",
"1 0.055556 122.444444 48.000000 \n",
"2 0.000000 116.571429 39.000000 \n",
"3 0.000000 131.833333 44.666667 \n",
"4 0.000000 126.500000 33.000000 \n",
"... ... ... ... \n",
"8666 NaN NaN NaN \n",
"8667 NaN NaN NaN \n",
"8668 NaN NaN NaN \n",
"8669 NaN NaN NaN \n",
"8670 NaN NaN NaN \n",
"\n",
" current_lose_streak current_win_streak date draw each_cms \\\n",
"0 0.0 4.0 2019-06-08 0.0 162.56 \n",
"1 0.0 3.0 2019-01-19 0.0 162.56 \n",
"2 0.0 1.0 2017-12-02 0.0 162.56 \n",
"3 2.0 0.0 2017-09-09 0.0 162.56 \n",
"4 0.0 2.0 2015-06-13 0.0 162.56 \n",
"... ... ... ... ... ... \n",
"8666 0.0 0.0 1994-03-11 0.0 NaN \n",
"8667 0.0 0.0 1994-03-11 0.0 NaN \n",
"8668 0.0 0.0 1993-11-12 0.0 NaN \n",
"8669 0.0 0.0 1993-11-12 0.0 NaN \n",
"8670 0.0 0.0 1993-11-12 0.0 NaN \n",
"\n",
" fighter is_winner longest_win_streak losses \\\n",
"0 Henry Cejudo True 4.0 2.0 \n",
"1 Henry Cejudo True 4.0 2.0 \n",
"2 Henry Cejudo True 4.0 2.0 \n",
"3 Henry Cejudo True 4.0 2.0 \n",
"4 Henry Cejudo True 2.0 0.0 \n",
"... ... ... ... ... \n",
"8666 Ray Wizard False 0.0 0.0 \n",
"8667 Sean Daugherty False 0.0 0.0 \n",
"8668 Trent Jenkins False 0.0 0.0 \n",
"8669 Art Jimmerson False 0.0 0.0 \n",
"8670 Teila Tuli False 0.0 0.0 \n",
"\n",
" total_rounds_fought total_time_fought(seconds) total_title_bouts \\\n",
"0 27.0 742.600000 3.0 \n",
"1 26.0 821.555556 2.0 \n",
"2 18.0 713.428571 1.0 \n",
"3 16.0 778.166667 1.0 \n",
"4 6.0 900.000000 0.0 \n",
"... ... ... ... \n",
"8666 0.0 NaN 0.0 \n",
"8667 0.0 NaN 0.0 \n",
"8668 0.0 NaN 0.0 \n",
"8669 0.0 NaN 0.0 \n",
"8670 0.0 NaN 0.0 \n",
"\n",
" weight_class win_by_Decision_Majority win_by_Decision_Split \\\n",
"0 Bantamweight 0.0 2.0 \n",
"1 Flyweight 0.0 2.0 \n",
"2 Flyweight 0.0 1.0 \n",
"3 Flyweight 0.0 1.0 \n",
"4 Flyweight 0.0 0.0 \n",
"... ... ... ... \n",
"8666 Open Weight 0.0 0.0 \n",
"8667 Open Weight 0.0 0.0 \n",
"8668 Open Weight 0.0 0.0 \n",
"8669 Open Weight 0.0 0.0 \n",
"8670 Open Weight 0.0 0.0 \n",
"\n",
" win_by_Decision_Unanimous win_by_KO/TKO win_by_Submission \\\n",
"0 4.0 2.0 0.0 \n",
"1 4.0 1.0 0.0 \n",
"2 3.0 1.0 0.0 \n",
"3 3.0 0.0 0.0 \n",
"4 2.0 0.0 0.0 \n",
"... ... ... ... \n",
"8666 0.0 0.0 0.0 \n",
"8667 0.0 0.0 0.0 \n",
"8668 0.0 0.0 0.0 \n",
"8669 0.0 0.0 0.0 \n",
"8670 0.0 0.0 0.0 \n",
"\n",
" win_by_TKO_Doctor_Stoppage wins url fid \\\n",
"0 0.0 8.0 /fighter/Henry-Cejudo-125297 125297 \n",
"1 0.0 7.0 /fighter/Henry-Cejudo-125297 125297 \n",
"2 0.0 5.0 /fighter/Henry-Cejudo-125297 125297 \n",
"3 0.0 4.0 /fighter/Henry-Cejudo-125297 125297 \n",
"4 0.0 2.0 /fighter/Henry-Cejudo-125297 125297 \n",
"... ... ... ... ... \n",
"8666 0.0 0.0 /fighter/Ray-Wizard-26 26 \n",
"8667 0.0 0.0 /fighter/Sean-Daugherty-25 25 \n",
"8668 0.0 0.0 /fighter/Trent-Jenkins-23 23 \n",
"8669 0.0 0.0 /fighter/Art-Jimmerson-20 20 \n",
"8670 0.0 0.0 /fighter/Teila-Tuli-16 16 \n",
"\n",
" name nick birth_date height weight association \\\n",
"0 Henry Cejudo The Messenger 2/9/1987 64.0 125.0 Fight Ready \n",
"1 Henry Cejudo The Messenger 2/9/1987 64.0 125.0 Fight Ready \n",
"2 Henry Cejudo The Messenger 2/9/1987 64.0 125.0 Fight Ready \n",
"3 Henry Cejudo The Messenger 2/9/1987 64.0 125.0 Fight Ready \n",
"4 Henry Cejudo The Messenger 2/9/1987 64.0 125.0 Fight Ready \n",
"... ... ... ... ... ... ... \n",
"8666 Ray Wizard NaN NaN NaN NaN NaN \n",
"8667 Sean Daugherty NaN 12/4/1975 70.0 190.0 NaN \n",
"8668 Trent Jenkins NaN NaN 74.0 185.0 NaN \n",
"8669 Art Jimmerson NaN 8/4/1963 73.0 196.0 NaN \n",
"8670 Teila Tuli NaN 6/14/1969 74.0 415.0 NaN \n",
"\n",
" class locality country birth_year \\\n",
"0 Flyweight Phoenix, Arizona United States 1987.0 \n",
"1 Flyweight Phoenix, Arizona United States 1987.0 \n",
"2 Flyweight Phoenix, Arizona United States 1987.0 \n",
"3 Flyweight Phoenix, Arizona United States 1987.0 \n",
"4 Flyweight Phoenix, Arizona United States 1987.0 \n",
"... ... ... ... ... \n",
"8666 NaN Los Angeles, California United States NaN \n",
"8667 Light Heavyweight Akron, Ohio United States 1975.0 \n",
"8668 Middleweight Denver, Colorado United States NaN \n",
"8669 Light Heavyweight St. Louis, Missouri United States 1963.0 \n",
"8670 Super Heavyweight Honolulu, Hawaii United States 1969.0 \n",
"\n",
" age_group \n",
"0 1985 \n",
"1 1985 \n",
"2 1985 \n",
"3 1985 \n",
"4 1985 \n",
"... ... \n",
"8666 NaN \n",
"8667 1970 \n",
"8668 NaN \n",
"8669 NaN \n",
"8670 1965 \n",
"\n",
"[8671 rows x 88 columns]"
]
},
"metadata": {
"tags": []
},
"execution_count": 172
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "93azkKUHAB3R",
"colab_type": "code",
"colab": {}
},
"source": [
"values = [\"win_by_Decision_Majority\", \"win_by_Decision_Split\", \"win_by_Decision_Unanimous\", \"win_by_KO/TKO\", \"win_by_Submission\", \"win_by_TKO_Doctor_Stoppage\"]\n",
"win_df = pd.DataFrame()\n",
"#for value in values:\n"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "V_AziSWvHHVW",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 399
},
"outputId": "9e4029dd-8b4f-4d27-97b8-fee14f0ec1a5"
},
"source": [
"fighters_df.pivot_table(values=values, index=[\"age_group\", \"country\"]).reset_index([\"age_group\", \"country\"])"
],
"execution_count": 185,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"